《圆柱的表面积》教学反思
作为一名优秀的教师,我们都希望有一流的课堂教学能力,借助教学反思我们可以学习到很多讲课技巧,那么你有了解过教学反思吗?下面是小编精心整理的《圆柱的表面积》教学反思,欢迎阅读,希望大家能够喜欢。
《圆柱的表面积》教学反思1
本课用课前预习课上小组内交流汇报的教学方式组织教学,课前布置了《圆柱的表面积》预习提纲 :
1、什么是圆柱的表面积?
2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?
3、怎样求圆柱的侧面积?
4、怎样求圆柱的底面面积?
5、怎样求圆柱的表面积?
课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的.长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。
但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,第一:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱体表面积的障碍。
针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。
总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。
《圆柱的表面积》教学反思2
根据学校安排,上了《圆柱的表面积》这节课。虽然比较顺利的完成了课堂教学,基本能达成教学目标任务,学生的学习效果也不错。但细细想来,也有不少需要改进的地方。
1、课件的制作还需要修改。在巩固练习侧面积的`计算中的第一题,圆柱的底面周长是18厘米,高是10厘米,求侧面积是没问题,但到了接下来的求表面积时,18除以3。14、再除以2,就得不到整数,给学生的计算带来麻烦,是自己备课不精细,考虑不全面造成的,需要修改,改成18。84厘米。
2、在讲完例四后,安排的练习中,本来设计一组三个练习题,一个像例四,要求表面积但只需求一个底面与侧面积之和;一个是求表面积,但是需要侧面积与两个底面积之和;另一个是求烟囱的面积——即只需求侧面积。是让学生明白,解决实际问题时,虽说要求圆柱的表面积,但要根据具体情况具体分析,不能死套公式。
3、课堂总结时,应放给学生自己总结本节的的学习收获,不要老师代劳。
下一次上课,尽量注意以上几个问题,争取更好一点。
《圆柱的表面积》教学反思3
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的',且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
《圆柱的表面积》教学反思4
圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的'不理解,需要通过反复练习才能达到一定的程度。
[圆柱的侧面积和表面积]
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即s圆柱侧=ch=2πrh(r为圆柱底面的半径)
圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2
教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。
《圆柱的侧面积和表面积》教学片段
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
求铅笔涂漆部分的面积是求()的面积;
压路机滚动一周压过多大路面是求()的面积;
求一个水桶用多少材料是求()的面积;
求汽油桶用多少铁皮是求()的面积。
《圆柱的表面积》教学反思5
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?
板书课题:圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)
师问:①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽
所以:圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?
板书:圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
1、引导:①求需要用多少面料,实际是求什么?
②这个帽子的表面积 的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:帽子的侧面积:3.14×20×28=1758.4(cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4≈20xx(cm2)
答:需用20xxcm2的面料。
四、巩固练习:课本第14页“做一做”。
五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。
六、作业:课内:练习二第5、7题;课外:练习二第6、8题。
附:板书设计
圆柱的表面积
长方形的.面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
帽子的侧面积:3.14×20×28=1758.4cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4
≈20xx(cm2)答:需用20xxcm2的面料。
《圆柱的表面积》教学反思6
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的.哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学反思7
《圆柱的表面积》是北师大版六年级下册第一单元的圆柱与圆锥之圆柱表面积第一课时,这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。在此前的学习中,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质及计算方法。通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:斜剪!展开之后是什么图形?有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的.思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建生活课堂应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。学生在动手、动脑、动口的操作过程,实际上就是一种积极有效的意义建构过程。在这个不断的操作、观察、体验的过程中,学生都在思考,都在感悟。体验的越丰富,对概念的感悟也就越深刻。圆柱侧面计算方法和表面积计算方法都是学生在操作、体验中获得的。
《圆柱的表面积》教学反思8
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的`宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;
2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
本节课的教学主要让学生明确圆柱体表面积的计算方法,并能够在练习中灵用公式进行计算。针对本课的教学设计,主要做到以下几点:
1、把握重点,突破难点,合理利用教材。
对于圆柱体侧面面积计算公式的推导,严格遵循学生主体性原则,让学生在动于操作、观察发现中促进知识的迁移,让学生轻松地理解掌握圆柱侧面面积的计算方法,以此来较好地突破难点。
2、直观演示和实际操作相结合,通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合。
本节课,改变了传统的先讲后练的教学模式,使讲、练结合贯穿教学的始终,让练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进了“进一法”的教学,使讲、练真正做到了有机结合,使学生学习的知识是有效的、实用的,同时也能激发学生学习数学和运用知识解决实际问题的兴趣,培养学生的应用意识。
《圆柱的表面积》教学反思9
1、直观演示和实际操作相结合
新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的'表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
《圆柱的表面积》教学反思10
圆柱的表面积是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个化曲为直的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率;经验少,类似烟囱、通风管、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一、在操作中建立表现。
学生已经学习了长方体和正方体的表面积,对表面积的概念并不陌生。在教学圆柱的表面积时,我先让学生自己制作圆柱体、在动手做一做的过程中理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,从而真正建立圆柱侧面的表象。
二、化曲为直沟通联系。
课前布置预习作业,找一贴有商标纸的圆柱实物,沿高剪开你有什么发现。课上学生交流,沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。我在圆柱的教具上包一张长方形纸,然后张开,在黑板上画上教具的直观图,长方形纸的图(1:1)。让学生观察后说出:长方形与圆柱底面的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。通过展、围的几次操作,让学生切实建立这两者之间的联系。
三、抓住本质,理清思路。
本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的.面积和。但在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在解决问题时,我要求学生写出每一步求的是什么,用了哪一个公式,帮助学生理清思路。遇到计算比较繁琐的提供计算结果,我觉得不必在计算上花费大量的时间。
当然,学生接触到一些实际问题的时候,由于生活经验和社会经验都比较浅薄,对一些物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法一定的不理解,需要通过反复练习才能达到一定的程度。另外我认为在教材的编排上也有一定的问题,五年级时学了圆的知识,过了差不多一年再来运用,根据学生遗忘曲线规律,大部分学生对圆的周长和面积公式比较生疏,虽然通过新授前的基础训练可以唤起学生的记忆,但毕竟要能熟练地用于侧面积和表面积的计算,无形中增加了学生解题的难度。原来教材的编排相对来说更有系统性,学习间隔的时间不长,可以在知识的运用过程中相互巩固内化。
《圆柱的表面积》教学反思11
我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。
一、小组合作学习的组织有序
这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。
二、学生操作的缺失
整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的'学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。
三、教师指导还需到位
由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。
《圆柱的表面积》教学反思12
教材分析
《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。
例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
学情分析
本班学生动手能力不是很强,自主探究方法、方式较少。
教学目标
使学生理解圆柱体侧面积和表面积的.含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
教学重点和难点
理解和掌握求圆柱表面积的计算方法。
教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(二)创设探究空间,主动发现新知
1、 认识圆柱的表面
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、 把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X2+ 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律 验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h
师:如果圆住展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(四)解决生活问题 深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
板书设计
长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
《圆柱的表面积》教学反思13
本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
根据教学内容的特点和我班学生的实际,本节课的'教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的空间观念和解决实际问题的能力。
1、把握重点,突破难点,合理利用教材
本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。
3、讲解与练习相结合
本节课,我改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
4、还要进一步加强学生解决问题能力的培养。
学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。
《圆柱的表面积》教学反思14
1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的.含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。
2、学生成为有效学习者。有效地复习了圆的面积计算方法,有效地掌握了圆的表面积计算方法
《圆柱的表面积》教学反思15
本节课的重点在于通过圆柱的侧面展开图推导出圆柱的侧面积公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
教学时,在突破侧面积的计算方法这个难点时,我首先让学生回忆了圆柱体的侧面展开,这个在上一课时学生亲自动手操作,各种展开方式最后通过割补确定沿高剪开就可以得到一个长方形(正方形),学生已经有了非常直观的印象,而且学生也探究了长方形的长和宽与圆柱体各部分之间的关系,因此本节课直接让学生简单回忆这部分知识,然后通过多媒体帮助学生确定,并板书两者之间的关系,进而推导出圆柱体的侧面积计算方法。
练习题的安排充分考虑到今后利用表面积的知识要解决的问题时会遇到的各种情况而设定。第一组题目的对比,最后说说求那部分的面积都在提醒学生具体问题要具体分析,后面对这个表面积应用的.三种情况也做了总结;第二组题目除了对表面积应用之外还考虑到材料类题目尾数取舍需采用进一法。总之题目的选择重在体现“生活中的数学”这个理念。
课前对这堂课充满了憧憬,课上总有不尽人意的地方。面对六年级的学生,平时一贯把他们当成大人看待,激励方式变得单一,学生回答问题的积极性也在降低,多数学生不愿意单独回答问题,让课堂形式有些枯燥。无论大人还是孩子还是喜欢表扬和鼓励的,今后要在这方面稍加重视。
【《圆柱的表面积》教学反思】相关文章:
圆柱的表面积教学反思01-10
圆柱的表面积教学反思06-20
“圆柱的表面积”教学反思04-14
《圆柱的表面积》教学反思04-14
《圆柱的表面积》教学反思(精选20篇)12-21
有关圆柱的表面积教学反思模板12-21
圆柱的侧面积和表面积教学反思01-10
数学课《圆柱的表面积》教学反思12-27
数学课《圆柱的表面积》教学反思通用12-07
圆柱的表面积02-15