圆柱的表面积

时间:2023-02-15 20:44:39 教案 我要投稿

圆柱的表面积

圆柱的表面积1

  教学目标

  1.理解圆柱的侧面积和表面积的含义.

  2.掌握圆柱侧面积和表面积的计算方法.

  3.会正确计算圆柱的侧面积和表面积.

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算.

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题.

  教学过程

  一、复习准备

  (一)口答下列各题(只列式不计算).

  1.圆的半径是5厘米,周长是多少?面积是多少?

  2.圆的直径是3分米,周长是多少?面积是多少?

  (二)长方形的面积计算公式是什么?

  (三)回忆圆柱体的特征.

  二、探究新知

  (一)圆柱的侧面积.

  1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

  2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

  (二)教学例1.

  1.出示例1

  例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)

  2.学生独立解答

  教师板书: 3.14×0.5×1.8

  =1.75×l.8

  ≈2.83(平方米)

  答:它的侧面积约是2.83平方米.

  3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

  (三).

  1.教师说明:圆柱的侧面积加上两个底面积就是.

  2.比较圆柱体的表面积和侧面积的区别.

  是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

  (四)教学例2.

  1.出示例2

  例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  2.学生独立解答

  侧面积:2×3.14×5×15=471(平方厘米)

  底面积:3.14× =78.5(平方厘米)

  表面积:471+78.5×2=628(平方厘米)

  答:它的表面积是628平方厘米.

  3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

  (五)教学例3.

  1.出示例3

  例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  2.教师提问:解答这道题应注意什么?

  这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

  3.学生解答,教师板书.

  水桶的侧面积:3.14×20×24=1507.2(平方厘米)

  水桶的底面积:3.14×

  =3.14×

  =3.14×100

  =314(平方厘米)

  需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

  答:做这个水桶要用1900平方厘米.

  4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  5.“四舍五入”法与“进一法”有什么不同.

  (1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

  (2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

  三、课堂小结

  这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.在实际应用时要注意什么呢?

  归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的`水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

  四、巩固练习

  (一)求出下面各圆柱的侧面积.

  1.底面周长是1.6米,高是0.7米

  2.底面半径是3.2分米,高是5分米

  (二)计算下面各.(单位:厘米)

  (三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)

  五、课后作业

  (一)砌一个圆柱形的沼气池,底面直径是3米,深是2米.在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

  (二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

  六、板书设计

  探究活动

  面包的截面

  活动目的

  培养学生的观察能力和操作能力,发展学生的空间观念.

  活动题目

  有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

  活动过程

  1、学生分组讨论.

  2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.

  3、画出截面图,表示结论,发展空间观念.

  参考答案

  1、沿水平方向横切一刀,截面是圆形.(如图1)

  2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)

  3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)

  4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)

  5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)

  (图1) (图2) (图3) (图4) (图5)

圆柱的表面积2

  教学内容:

  教科书第40―41页的例l一例3,完成第41页的“做一做”和练习十的第2―5题。

  教学目的:

  使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图(仿照教科书第39页的图制作)。

  教学过程

  一、复习

  1.指名学生说出圆柱的特征。

  2.口头回答下面问题:

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  学生回答后板书:长方形的面积=长×宽

  二、导入新课

  教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形?

  教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

  教师:这个展开后的长方形与圆柱有什么关系?

  学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的`高。

  教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

  三、新课

  1,圆柱的侧面积。

  板书课题:圆柱的侧面积。

  教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。

  教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢?

  教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。

  教师:那么,圆柱的侧面积应该怎样计算呢?

  引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高

  (板书上面等式:)

  2.教学例1:

  用投影片或小黑板出示例1。

  让学生回答下面的问题:

  (1)这道题已知什么,求什么?

  (2)计算结果要注意什么?

  指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。 做完后,集体订正。

  3.小结。

  要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式:

  4.理解圆柱表面积的含义。

  教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?

  通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。

  教师指着圆柱的展开图,“那么,是什么?”

  指名学生回答,使大家明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:=圆柱侧面积十两个底面的面积

  教学例2。

  出示例2的题目。

  教颊:这道题巳知什么?求什么?

  学生:已知圆柱的高和底面半径,求表面积。

  教师:要求,应该先求什么?后求什么?

  使学生明白:要先求圆柱侧面积和底面积,后求表面积。

  教师:我们可以根据巳知条件画出这个圆柱。随后教师出示一圆柱模型,将数据标在图上。

  教师:现在我们把这个圆柱展开。出示展开图,如下:

  让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圈柱的侧面积怎样计算?圆柱的底面积应该怎样求?”

  指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。

  然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。

  做完后,集体订正。

  6.教学例3。

  出示例3。

  教师:这道题已知什么?求什么?

  学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。

  教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  使学生明白:水桶没有盖,说明它只有一个底面。

  教师:要计算做这个水桶需要多少铁皮,应该分哪几步?

  指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

  做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省赂的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  7.小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习

  1.做第41页“做一做”的第1题。

  教师:这道题已知什么?应该怎样求侧面积?

  使学生明白可以直接用底面周长乘以高就可以得到侧面积。

  让学生做在练习本上,做完后集体订正。

  2.做第41页;做一做”的第2题。

  让学生独立做在练习本上,教师行间巡视,做完后集体订正。

  五、作业

  1.完成第42页练习十的第2一;题。

  (1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。

  (2)第4题,圆柱形沼气池的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。

  (3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。

  2.让学有余力的学生做练习十的第6‘、7‘题。

  第6题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。

  第7‘题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59十 339.12=402.71≈410(平方分米)

【圆柱的表面积】相关文章:

圆柱的表面积教案08-17

《圆柱的表面积》教案03-29

圆柱的表面积教案02-16

《圆柱的表面积》教学反思04-14

圆柱的表面积教学反思01-10

“圆柱的表面积”教学反思04-14

《圆柱的表面积》教案(精选17篇)05-19

《圆柱的表面积》教学反思(精选20篇)12-21

有关圆柱的表面积教学反思模板12-21