二次根式教案

时间:2024-01-18 19:32:44 诗琳 教案 我要投稿

二次根式教案(精选11篇)

  作为一名教职工,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?以下是小编帮大家整理的二次根式教案,希望对大家有所帮助。

二次根式教案(精选11篇)

  二次根式教案 1

  教学目的

  1、使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

  2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

  教学重点

  最简二次根式的定义。

  教学难点

  一个二次根式化成最简二次根式的方法。

  教学过程

  一、复习引入

  1、把下列各根式化简,并说出化简的根据:

  2、引导学生观察考虑:

  化简前后的根式,被开方数有什么不同?

  化简前的`被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

  3、启发学生回答:

  二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

  二、讲解新课

  1、总结学生回答的内容后,给出最简二次根式定义:

  满足下列两个条件的二次根式叫做最简二次根式:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽的因数或因式。

  最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

  2、练习:

  下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

  3、例题:

  例1 把下列各式化成最简二次根式:

  例2 把下列各式化成最简二次根式:

  4、总结

  把二次根式化成最简二次根式的根据是什么?应用了什么方法?

  当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

  当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

  此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

  三、巩固练习

  1、把下列各式化成最简二次根式:

  2、判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  二次根式教案 2

  教学目标

  1、使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

  2、熟练地进行二次根式的加、减、乘、除混合运算、

  教学重点和难点

  重点:含二次根式的式子的混合运算、

  难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子、

  教学过程设计

  一、复习

  1、请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件、

  指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式、

  2、二次根式 的乘法及除法的法则是什么?用式子表示出来、

  指出:二次根式的乘、除法则也是在一定条件下成立的、把两个二次根式相除,

  计算结果要把分母有理化、

  3、在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

  4、在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的.式子:

  二、例题

  例1 x取什么值时,下列各式在实数范围内有意义:

  分析:

  (1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

  (3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

  (4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零、

  x-2且x0、

  解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一个二次根式的被开方数的分子与分母都可以分解因式、把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0、

  解 因为1-a>0,3-a0,所以

  a<1,|a-2|=2-a、

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0、

  这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的、

  问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

  分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算、

  注意:

  所以在化简过程中,

  例6

  分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷、

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、课堂练习

  1、选择题:

  A、a2B、a2

  C、a2D、a<2

  A 、x+2 B、-x-2

  C、-x+2D、x-2

  A、2x B、2a

  C、-2x D、-2a

  2、填空题:

  4、计算:

  四、小结

  1、本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握、

  2、在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围、

  3、运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件、

  4、通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题、

  五、作业

  1、x是什么值时,下列各式在实数范围内有意义?

  2、把下列各式化成最简二次根式:

  二次根式教案 3

  【 学习目标 】

  1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

  2、过程与方法:进一步体会分类讨论的数学思想。

  3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

  【 学习重难点 】

  1、重点:准确理解二次根式的概念,并能进行简单的计算。

  2、难点:准确理解二次根式的双重非负性。

  【 学习内容 】

  课本第2— 3页

  【 学习流程 】

  一、 课前准备(预习学案见附件1)

  学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

  二、 课堂教学

  (一)合作学习阶段。

  教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

  (二)集体讲授阶段。(15分钟左右)

  1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

  2. 教师对合作学习中存在的普遍的不能解决的.问题进行集体讲解。

  3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

  (三)当堂检测阶段

  为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

  (注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

  三、 课后作业(课后作业见附件2)

  教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

  四、板书设计

  课题:二次根式(1)

  二次根式概念 例题 例题

  二次根式性质

  反思:

  二次根式教案 4

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的.取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

  二次根式教案 5

  一、教学目标

  1、理解分母有理化与除法的关系、

  2、掌握二次根式的分母有理化、

  3、通过二次根式的分母有理化,培养学生的运算能力、

  4、通过学习分母有理化与除法的关系,向学生渗透转化的.数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1、教学重点:分母有理化、

  2、教学难点:分母有理化的技巧、

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式、

  例1 说出下列算式的运算步骤和顺序:

  (1) (先乘除,后加减)、

  (2) (有括号,先去括号;不宜先进行括号内的运算)、

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质)、

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题、

  二次根式教案 6

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:

  在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:

  正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:

  (1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的'式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的值的思路。

  答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

  二次根式教案 7

  一、素质教育目标

  (一)知识教学点

  1、使学生了解最简二次根式的概念和同类二次根式的概念、

  2、能判断二次根式中的同类二次根式、

  3、会用同类二次根式进行二次根式的加减、

  (二)能力训练点

  通过本节的学习,培养学生的思维能力并提高学生的运算能力、

  (三)德育渗透点

  从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想、

  (四)美育渗透点

  通过二次根式的加减,渗透二次根式化简合并后的形式简单美、

  二、学法引导

  1、教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法、

  2、学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则、

  三、重点·难点·疑点及解决办法

  1、教学重点二次根式的加减法运算、

  2、教学难点二次根式的化简、

  3、疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果、

  四、课时安排

  2课时

  五、教具学具准备

  投影片

  六、师生互动活动设计

  1、复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题、

  2、教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义、

  3、再通过较复杂的.二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则、

  4、通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法、

  七、教学步骤

  (一)明确目标

  学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法、

  (二)整体感知

  同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同、通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力、

  二次根式教案 8

  一、教学目标

  1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2、使学生掌握化简一个二次根式成最简二次根式的方法。

  3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1、重点:能够把所给的二次根式,化成最简二次根式。

  2、难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的'方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1、被开方数的因数是整数,因式是整式。

  2、被开方数中不含能开得尽方的因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1、引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2、要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1、满足什么条件的根式是最简二次根式。

  2、把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1、指出下列各式中的最简二次根式:

  2、把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  二次根式教案 9

  教学重点

  二次根式混合运算算理的理解。

  教学难点:

  类比整式运算准确快速的进行二次根式的.混合运算。

  教学过程:

  一、情境诱导

  《二次根式混合运算习题课》教学设计-杨桂花

  二、练习指导

  (学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)

  练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

  三、展示归纳

  1、学生汇报解题过程,生说师写;

  2、发动其他学生评价补充完善;

  3、师画龙点睛强调:

  (1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

  (2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

  四、变式练习

  (先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

  《二次根式混合运算习题课》教学设计-杨桂花

  五、小结

  本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

  六、布置作业

  《二次根式混合运算习题课》教学设计-杨桂花

  二次根式教案 10

  一、说教材

  首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化简二次根式的经历,为本节课的学习做了良好的铺垫;本节课的学习为后续学习二次根式的混合运算打下基础。

  二、说学情

  再来谈谈学生的情况。这一阶段的学生已经具备了一定的发现问题、解决问题的能力,逻辑思维和计算能力也有了很大的提升。因此教师在教学过程中,要针对学生的特点进行有针对的教学,以便于课程内容的有效展开。

  三、说教学目标

  基于以上分析,我制定了如下三维教学目标:

  (一)知识与技能

  掌握二次根式加减法的计算方法,并能用以解决简单问题。

  (二)过程与方法

  通过探究二次根式加减法的计算方法的过程,进一步感受由特殊到一般的思想,提升运算能力。

  (三)情感、态度与价值观

  感受数学和生活息息相关,提升学习数学的兴趣。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是二次根式加减法的计算方法,教学难点是二次根式加减法的计算方法的探究。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  此时我会请学生尝试总结二次根式加减法的计算方法。以学生的现有能力,能够说出其中的关键内容。我会在此基础上予以规范:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

  以上活动使得学生亲身经历了知识的形成过程,更容易理解和接受,同时能够提升分析问题、解决问题与类比迁移等诸多方面的能力。

  (三)课堂练习

  对于本节课而言,探究计算方法是其中一项目标,巩固练习也同样重要。我会选用教材上的例1和例2作为课堂练习题。

  例1的第(1)小题是两个具体的`二次根式相减,相对简单,直接考查二次根式加减法的计算方法;第(2)小题二次根式的被开方数中含有字母,更加具有一般性,在一定程度上考验抽象思维。

  例2第(1)小题难度有所提升,不仅二次根式相对复杂,而且是加减混合运算;第(2)小题更是在加减混合运算的基础上出现了小括号,并且各括号内部无法合并,因此多了一个去括号的步骤。

  这样的练习题不仅进一步完善了二次根式加减法的计算方法,而且能让学生体会到二次根式的加减与整式的加减在流程上的一致性,从而建立新旧知识间的联系,完善知识体系。

  (四)小结作业

  最后,我会请学生自主总结本节课的收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

  课后作业一方面是完成课后练习,再次巩固二次根式的加减法;另一方面是总结二次根式的概念、性质及运算法则,以便形成系统的认知。

  二次根式教案 11

  一、教学目标

  1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

  2、会进行简单的二次根式的乘法运算。

  3、使学生能联系几何课中学习的勾股定理解决实际问题。

  二、教学重点和难点

  1、重点:会利用积的算术平方根的性质化简二次根式。

  2、难点:二次根式的乘法与积的算术平方根的关系及应用。

  重点难点分析:

  本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

  本节难点是二次根式的乘法与积的算术平方根的关系及应用。积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足。

  三、教学方法

  从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

  1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。在讲解二次根式的乘法时可以结合积的`算术平方根的性质,让学生把握两者的关系。

  2、积的算术平方根的性质和xx及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课观察例子得到结果

  类似地可以得到:

  由上一节知道一般地,有=(a,b)

  通过上面的例子,大家会发现=(a,b)也成立

  (二)新课

  积的算术平方根。

  由前面所举特殊的例子,引导学生总结出:一般地,有(a≥0,b≥0)。

  积的算术平方根,等于积中各因式的算术平方根的积。

  要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0。在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积。根据这个性质可以对二次根式进行恒等变形。

  化简,使被开方数不含完全平方的因数(或因式):

  说明:

  1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于

  2、即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。

  3、(a≥0,b≥0)可以推广为(a≥0,b≥0,c≥0)

  化简二次根式的步骤

  1、将被开方数尽可能分解出平方数;

  2、应用=(a,b)

  3、将平方项利用=化简

  小结:

  1、积的算术平方根与二次根式的乘法的互逆性;

  2、灵活应用他们进行二次根式的乘法运算及化简二次根式

  作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题

【二次根式教案】相关文章:

二次根式教案11-10

二次根式的加减教案01-19

《二次根式的运算》的教案09-07

精选二次根式教案3篇08-04

二次根式教案(15篇)02-27

二次根式教案(精选11篇)04-13

二次根式数学教案04-17

二次根式教案15篇02-16

二次根式教案(精选5篇)02-22

二次根式教案范文7篇10-26