《广角》教案

时间:2022-09-14 11:01:03 教案 我要投稿

《广角》教案

  作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?下面是小编收集整理的《广角》教案,欢迎阅读与收藏。

《广角》教案

《广角》教案1

  一、教学内容

  找次品

  二、教学目标

  1.使学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的发来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  三、编排特点

  1.关注学生的生活经验,重视小组合作与交流。

  根据学生的年龄特征,教科书在素材的选取上非常注重现实性,如钙片、矿泉水、松果、饼干、糖果、白糖等物品,都是学生身边常见的,既可激发学生学习的兴趣,又为教师组织教学提供了便利。

  教科书的两个例题在编排上都呈现了小组合作学习的情景,要求学生通过小组活动探究解决问题的方法,在活动过程中逐步养成合作、交流的习惯。

  2.注意体现思维过程和分析方法,培养学生解决问题的能力。

  教科书在编排结构上注重体现数学知识的逻辑顺序,强调数学思维的一般过程,着力培养学生解决数学问题的意识和能力。如例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律总结,从而让学生感受解决问题策略的多样性;例2则安排了9个待测物品,并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。

  此外,教科书在分析方法的编排上还很重视数学化,即由具体到抽象,由特殊到一般的数学分析模式。先让学生探讨待测物品数量为5个、9个时怎样找次品,并罗列出各种解决方案;然后从这些方案中寻找规律,总结、提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题,同时也从可验证归纳出的方法是否正确。这里之所以需要验证,是因为本单元提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的`情形是否适用,还需要通过试验来检验。

  四、具体编排

  例1

  (1)创设找5瓶钙片中的1瓶次品的合作学习的情境。

  (2)认识找次品这类问题,探索解决问题的方法。

  (3)体现解决问题方法的开放性、多样性。

  例2

  (1)创设找若干零件中的1个次品的合作学习的情境。

  (2)进一步认识找次品这类问题,探索解决问题的最优方法。

  (3)体现解决问题方法的开放性、多样性、有效性。

《广角》教案2

  教学目标:

  1、使学生通过生活中的事例,经历探究两端要栽植树的数学规律的过程,初步体会解决植树问题的方法。

  2、初步培养学生从实际植树问题中探索规律以及找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  在探究活动中发现规律,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:

  让学生理解“两端都种”情况下棵树和间隔数之间的规律,并利用规律来解决生活中的实际问题。

  教学过程:

  一、复习。(口算)

  2.5×0.4 = 1.25×8 =

  0.9×0.9 = 15+1.5 =

  8 – 1.2 = 4.5÷5 =

  二、创设情境,导入新课。

  1、情境引入。

  (1)、图文演示:3个手指之间有几个间隔呢? (2个间隔);4个手指之间有几个间隔呢? (3个间隔);5个手指之间有几个间隔呢? (4个间隔);手指的个数与间隔数有什么关系?

  (2)、图文演示:人民大会堂前的柱子根数与间隔数有什么关系?

  (3)、引出课题《植树问题》(两端都栽)

  2、重温相关名称(图文演示):什么叫棵树?什么叫间隔数?什么叫间隔长?

  三、新知探讨

  1、出示例题:同学们在全长20米的小路一旁植树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  思考与探索:

  (1)、你认为题目中哪些字词比较关键,你是怎样理解的?

  (2)、小组内研究,可以通过画图,也可以通过列算式……解决问题.

  (3) 、让学生扮演线段图和列式计算。

  (4)、小结:总路长÷间隔长=间隔数,棵数=间隔数+1,间隔数=棵树- 1

  2、把上题的“20米”改成“100米”,你能算出一共需要多少棵树吗?

  3、再把把上题的“一旁”改成“两旁”,你能算出一共需要多少棵树吗?

  4、把三道例题对比,找出联系与区别。

  2、植树问题的题材延伸。

  我们还可以运用植树问题的知识解决下面的问题呢

  摆花篮、装路灯、电线杆、队列、楼层、公交站点......

  四、练习。

  1、填空题

  (1)、沿着小路的一旁栽树,两端都栽。

  ( )比( )多1,棵树=( )○( )。

  ( )比( )少1,间隔数=( ) ○ ( )

  (2)、马路的'一边栽了25棵梧桐树,如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵银杏树?

  想:要求银杏树的棵数,也就是求25棵梧桐树的( )。算式是( )。

  (3)、 在一条18米的走廊上摆花盆(两端都放),每隔3米摆一盆花,一共摆了多少盆花?

  想:这道题要先算( ),再算( )

  2、选择题

  1、迎接来宾的小学生站在60米的校道排成一列纵队(两端都站),每两名小学生之间相距4米,这列队伍共有( )名学生。

  A、14 B、15 C、16

  2、在一条全长200米的街道 两旁安装节能路灯(两端都装),每隔20米安装一座。一共需要安装( )座节能路灯?

  A、10 B、22 C、11

  五、全课小结:大家今节课有什么收获?

  教学反思

  我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。整节课设计基于我班学生实际情况,课前创设情境激发生学习的兴趣,紧接着引出例题探讨植树问题,通过例题的画图感知:总路长÷间隔长=间隔数,棵数=间隔数+1,间隔数=棵树- 1,以例题为载体突破教学重点难点,并以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。但是,这节课我还是放不开,让学生动手操作少,让学生讨论探究少,让学生说得少等。

《广角》教案3

  教学目标:

  (一)通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。

  (二)能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  (三)在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。

  (四)使学生感受推理在生活中的广泛运用,初步培养学生有顺序的全面的思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。

  教学难点:

  初步培养学生有序的,全面的思考问题及数学表达的能力。

  教学过程:

  (一)激情导入

  游戏:猜猜我的年龄?

  来猜一猜吧!哦,有这么多答案,看来大家没办法确定老师的年龄,给你一个提示:36、37这两数中有一个是老师的年龄。

  有两种可能,老师再给你一个信息,我今年不是36岁,现在答案一样,说说你是怎么猜的。

  像这样根据一些信息提示,得出一些结论,这样的方法叫推理!

  认识他吗?著名侦探柯南,他就是通过自己敏锐观察力和逻辑推理侦破了一个个扑朔迷离的案件,今天他也给我们带来了数学推理挑战题,有信心尝试吗?

  (一)初级挑战

  生活中的'推理;

  (二)中级挑战

  教师利用课件呈现例1,出示例题1

  师:同学们,我们认真阅读,然后告诉老师,从题目中你发现了哪些信息?

  生:有三本书,语文、数学、道德与法治。

  生:有三个小朋友,分别是:小红、小丽、小刚。

  生:他们三人各拿一本。

  师:下面三人各拿一本,这个信息是什么意思呢?

  生:他们三人拿的书都不相同。

  师:下面我们来看看三个小朋友都说了什么话?

  生:小红说:我拿的是语文书。小丽说:我拿的不是数学书。

  师:题目中要让我们求什么?〔问题:小丽拿的是什么书?小刚呢?〕

  师:很好,那他们到底拿的是什么书呢?

  1、选择自己喜欢的方法来完成学习单

  2、完成后,和同桌说说你是怎么想的。

  学生活动,汇报

  学生自主学习完成,教师巡视。

  学生汇报:

  生 1:小红拿的是语文书,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了。

  生 2:用连线的方法

  我把人名和书名写成两行,然后根据小红拿的是语文书,所以小红就与语文书连在一起了,剩下的小丽和小刚就只能连数学和道德与法治了,小丽又说,她拿的不是数学书,那小丽肯定拿了道德与法治了,再连上线,最后小刚拿的就是数学书了,再连上线。

  生3:用表格法(小红拿的是语文书,所以先在小红下打勾,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了

  师:孩子们,再来回顾解决问题的过程,找完数学信息后,部分同学选择了用连线法跟表格的方式来进行整理,这样做可以让我们把信息整理得更加地〔清楚、简洁〕。

  先从哪个条件开始呢?

  三个同学都是从“小红拿到是语文书”找到关键条件,把能确定的就先确定。〔板书:先确定〕

  师:接下来呢?就剩下数学书和道德与法治书了,而小丽又说:〝我拿的不是数学书〝,小丽拿的肯定是道德与法治书了;又在剩下的条件中,根据已给的条件,能排除的先排除。〔板书:排除〕

  最后因为小红拿的是语文书,小丽拿的是道德与法治书,所以小刚拿的就是数学书。最后我们推出结论。

  刚才同学们很厉害,表现这么棒,柯南送给大家一首儿歌,一起念念。

  掌握了推理技巧和方法,我们一起练练手:

  1、试一试

  指明学生读题后,认真思考,同时让学生说一说:你是怎么想的呢?用什么方法?并且请一名同学展示自己是怎么做的,怎么考虑的?

  生:用连线法,把三只狗的名称和重量分别写成两行,因为笑笑是最轻的,所以笑笑和5千克连在一起,乐乐比欢欢重,乐乐就与9千克连在一起,剩下的欢欢就与7千克连在一起。师:同学们,说的真好!

  2、猜一猜

  师:从题目中,我们知道了哪些信息呢?

  生:信封里有一个圆,一个三角形,一个长方形,他们分别是三种颜色中的一个。

  师:哪个图形,我们最能先判断出来,为什么?

  生:绿色的是圆形,因为绿色露出来的是半圆,下面肯定也是半圆,

  师:发现的非常好!那红色和蓝色能不能判断?生:不能。

  师:下面请听老师一个提示:〔出示课件:蓝色说:我不是三角形。〕现在请同学们用喜欢的方法写下来。

  学生展示结果并说一说自己是怎么想的。〔?让学生尽量说出直接阅读后就知道的和连线法,以及表格法〕

  师:下面我们一起来看看到底是不是这样的。〔教师点击课件把信封拿掉,显示结果〕

  师:小朋友真棒!太厉害了!同学们现在跟老师一起说一说,绿色的是圆形,剩下三角形和长方形,蓝色的不是三角形,所以红色的是三角形。最后蓝色的一定是长方形。

  (三)终级挑战

  读题后,同桌两人利用学习单里的卡片摆一摆,验证你的想法,写下数字密码。

  并指名一位同学上台演示,说说你的推理过程。

  恭喜同学们,闯关成功。

  (四)小游戏

  三人游戏,三顶不同颜色的帽子,闭眼,每人分别戴上一顶,根据同伴帽子的颜色,猜自己帽子的颜色,

  (五)课堂总结

  师:同学们,开心吗?通过这节课的学习,你有哪些收获呢?是呀,我们个个都成为了小侦探。推理是一个非常重要的数学思想方法,希望同学们在今后的学习中,能善于观察,勤于思考,用推理解决更多的问题。

《广角》教案4

  教材第98页的内容。

  1.借鉴排列问题的学习经验,通过摆一摆、写一写、画一画等活动找出组合数。

  2.在排列问题与组合问题的对比中,感悟两类问题的联系与区别,进一步体会解决问题的策略与方法。

  3.培养学生有序、全面地思考问题的意识。

  重点:经历探索最简单事物的组合数的过程。

  难点:初步感受排列与组合的区别。

  课件、数字卡片。

  师:由三张分别是5、7、9数字卡片组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?

  学生动手操作,汇报交流。

  师:这是我们上节课学习的排列问题,今天我们继续学习数学广角的另一个问题——组合问题。

  1.明确问题。

  课件出示教材第98页例2。有3个数5、7、9,任意选取其中2个数求和,得数有几种可能?

  师:请同学们认真读题,你知道了什么?

  师:求和是?得数有几种可能是什么意思?(指名回答。)

  2.小组合作,自主探究。

  师:同学们猜一猜,有几种可能?

  师:有不同意见了,那么到底是多少种呢?请大家动起手来验证一下。

  师:摆一摆、画一画,利用表格都可以,你喜欢怎么做就怎么做。

  3.交流分享。

  (1)同桌交流,组内交流。

  师:得数有几种可能呢?同桌先交流一下,把自己的想法说给他听。然后组内的同学互相交流想法。

  (2)全班展示交流。

  师:现在,谁愿意把自己的'想法说给大家听?让大家分享你的精彩!

  学生代表到台前讲解,教师配合板书。

  有不同思路的学生到台前交流,教师引导归纳。

  4.总结。

  师:刚才我们成功做对了两道难题。但是现在老师糊涂了,为什么排数字卡

  片时用3个数字可以摆6个不同的数,而两数求和时3个数字却只有3个和呢?都是3,为什么出现的结果不同呢?

  结论:摆数与顺序有关,求和与顺序无关。摆数可以交换位置,而求和交换位置没意义。

  1.教材第98页“做一做”第1题。

  学生分组汇报表演。

  2.教材第98页“做一做”第2题。

  学生独立完成。

  3.搭配衣服。

  运动员比赛完后,流了一身汗,为了预防感冒,要赶快换衣服。我们来搭配漂亮的衣服给他们穿,好吗?每一件衣服搭配一条裤子,一共有多少种不同的搭配?怎样搭配才能不重复、不遗漏呢?

  请同学们翻开教材第99页,看到“练习二十四”第3题,用连线的方式帮他们搭配衣服。(课件演示。)

  通过这节课的学习,我们又学会了什么?你有什么收获?

  教师引导梳理。

  师:回到家,和你的爸爸妈妈拍张全家福,交换位置再来一张,试试看能拍几张不同的全家福?

  在日常生活中,有很多需要用排列、组合来解决的问题,如乒乓球的比赛场次等。作为二年级的学生,已经有了一定的生活经验。因此,在数学教学中注意安排生动有趣的活动,让学生通过这些活动,经历简单的排列、组合规律知识的探索过程。同时,让学生在活动中通过动手操作探究新知、发现规律,从而培养学生的动手操作能力、逻辑思维能力和语言表达能力。

《广角》教案5

  知识与技能:

  1、使学生初步体会对策论方法在解决实际问题中的应用。

  2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  3、培养学生的应用意识和解决实际问题的能力。

  过程与方法:

  使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:

  体会优化的思想难点:寻找解决问题最优方案,提高学生解决问题的能力。

  教具:

  图片教学过程:

  一、情境导入:

  1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?

  2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?

  3、这节课我们就来研究研究。

  板书课题:

  数学广角二、

  探究新知

  1、把田忌在赛马中使用的方法在给出的`表格中补充完整。出示表格 齐王 田忌 本场胜者第一场 上等马 下等马 齐王第二场 中等马 上等马 田忌第三场 下等马 中等马 田忌

  2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?

  讨论3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。

  4、展示各组汇报的结果田忌可采用的策略一共有6种,但只有一种是唯一可以获胜的。

  5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。

  三、巩固新知

  1、数学游戏:

  1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报?说明游戏规则

  2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。如果让你先报数,为了获胜,你第一次报几?以后怎么报?

  四、小结:

  这节课你有什么收获?

  五、作业:

  写一篇数学日记

《广角》教案6

  教材分析:

  “数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。

  ?教学目标:?

  1.学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。

  2.能利用集合的思想方法来解决简单的实际问题。?

  3.学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。?

  教学重点:学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。

  教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

  教学难点:经历集合图的产生过程,理解集合图的意义。

  教学过程:

  一、巧用对比,初悟“重复”

  1.观察与比较(课件出示图片)父与子

  2.提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?

  第一种:无重复情况。

  黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。

  预设:列式一:2+2=4(人)

  第二种:有重复情况。

  汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。

  列式二:2+2=4(人)4-1=3(人)

  师追问:为什么减1?

  二、初步探究,感知重叠

  1.查看原始数据,引出重复。

  师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)

  书法比赛

  小丁

  李方

  小明

  小伟

  东东

  绘画比赛

  小明

  东东

  丹丹

  张华

  王军

  刘红

  师:从这张表格中你了解到了哪些信息?

  (2)师:一共有多少名同学参加比赛?

  师:怎么会错了呢?再仔细看看,谁来说说?

  (3)师:那到底是多少人呢?我们来数数看。

  重复什么意思?指着第二个小明:“他算吗?”为什么不算?

  (4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、

  2.揭示课题。(板书课题:重叠问题)。

  三、经历过程,建立模型

  1.激发欲望,明确要求。

  师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?

  师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)

  请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。

  2.独立探究,创生维恩图

  学生探究画法,师巡视,从中找出有代表性的作品准备交流。

  3.展示交流,感知维恩图

  师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。

  预设:

  第一种情况:做记号

  师:你是怎么想的?

  第二种情况:写在最前面;写在前面并圈出来

  师:你是怎么想的?这样整理有什么好处?

  师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。

  引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。

  第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)

  出示:他把这两个名字写在这合适吗?应该写在哪?

  第四种情况:在前面并一个名字来表示

  师:你是怎么想的?这样整理有什么好处?

  师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?

  师:圈的时候,你们有什么发现?为什么?

  师:看来,这样调整能清楚地表示重复和不重复的部分。

  4.整理画法,理解维恩图

  (1)动态演示维恩图产生过程

  师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的'这一部分我们恰好可以用来表示什么?

  (2)介绍维恩图的历史

  师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。

  (3)理解维恩图各部分意义

  (课件出示用不同颜色,直观理解各部分意义)

  师:仔细观察,你知道韦恩图的各部分表示什么意思吗?

  师:a.红色圈内表示的是什么?

  b.蓝色圈里表示什么?

  c.中间部分的两个表示什么?

  d.左边的“紫色部分”表示什么?

  e.右边的“绿色部分”表示什么?

  师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)

  (4)比较突出维恩图的优势

  我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?

  (5)、数形结合,运用维恩图。

  师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演

  预设整理算法:

  生1:5+6-2=9(人)

  生2:3+2+4=9(人)

  生3:5-2+6=9(人)

  生4:6-2+5=9(人)

  ①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)

  重点理解为什么-2。课件动态演示

  ②比较:

  3+2+4=9(人)

  5+6-2=9(人)

  a.两道算式中都有个2,这个2表示什么呢?

  圈出+2和-2,为什么(1)中是+2,(2)中是-2?

  b、你能在第一个算式里找到5?6?

  c. 3+2表示什么意思?2+4表示什么意思?这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)

  师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)

  四、解决问题,运用模型

  1.创设情境,生活应用(课件演示)

  这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?

  展示生活问题

  (1)这是我们科学书中的重叠问题,找到重叠部分了吗?

  (2)这是我们数学书中的重叠问题,谁重叠了?

  (3)这是自然界的动物,它们之间存在重叠问题吗?

  (4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!

  (5)、文具店的问题。

  出示下题:

  2.运用新知解决问题。

  这些问题你们都能解决吗?(完成练习纸)

  反馈:

  第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?

  展示:5+5-3=7(种)

  2+3+2=7(种)

  师:这里的3表示什么?

  为什么一个+3,一个-3呢?

  师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?

  第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?

  第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?

  五、展开变式,深化模型

  师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。

  我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?

  老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?

  反馈:5人。6人。7人。8人。9人。

  课件动态演示:

  师:仔细观察你有什么发现?

  同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问

  六、回顾总结,延伸模型。

  这节课你有什么收获?你还想知道什么?

《广角》教案7

  教学目标:

  1、使学生通过观察、猜测、操作等活动,找出简单事物的排列数和组合数。

  2、培养学生初步的观察、分析能力及有序地、全面地思考问题的意识。

  3、通过活动进一步培养学生的合作交流意识,感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:探索巧妙搭配、有序排列的方法,并用所学知识解决实际生活中的问题。

  教学难点:面对实际问题,能初步构建解决问题的数学模型。

  教学过程:

  一、导入新课

  谈话引入:同学们,今天我们一起参加数学广角的活动,解决生活中的有关数学问题,大家愿意吗?

  [设计意图]开门见山创设情境,直接揭示学习任务,迅速投入学习活动。

  二、创设情境

  情境一:穿衣服

  l、尝试猜想

  师:现在我们挑选了7位小小志愿者,为他们准备了2种颜色的上衣和3种颜色的裤子。问:要使每人穿得不一样,能做到吗?请你猜一猜。学生可能猜测:做不到。

  2、思考讨论

  (l)引导思考:要知道能不能使每人穿得不一样,关键要知道什么?用上衣和裤子搭配,到底可以有多少种不同的搭配方法?请大家用简便的方法把各种穿法快速记录下来。

  (2)学生独立思考,尝试表示。

  (3)小组交流:把你的想法在小组内进行交流。教师巡视,参与指导小组活动。

  3、展示汇报。师:现在哪组来汇报,你们怎么想的?用什么方法记录的? 学生可能想法: ①从上衣出发,1件上衣可以搭配3条裤子,2件就可搭配6条裤子。②从裤子出发,1条裤子可与2件上衣连,3条裤子就有3个2。追问:说说他是用什么方法记录的?还有不同想法吗?对他的方法有意见吗?

  学生在投影上展示、介绍搭配方案。

  4、观察比较:(1)师:经过刚才的讨论我们发现:要解决这个问题,我们可以有两种想法,一种是从上衣出发,另一种是从裤子出发考虑。请看大屏幕(媒体演示两种思考过程)。大家还发现了哪几种记录的'方法?根据学生回答用媒体演示不同的记录方法。我们可以用画图表示、也可以编号连线、文字说明、算式等不同形式来记录。

  (2)小结:你认为哪一种记录方法能既快速又方便地表示出来?

  师:看来,有顺序地连一连线或排一排能帮助我们不重复、不遗漏地把所有的搭配方法找出来。

  5、拓展延伸。

  (1)师:现在你认为能不能做到每人穿得不一样? 那该怎么办?

  (2)师:请你增加一种颜色的上衣或一种颜色的裤子,想一想有几种不同的搭配方法?把各种穿法快速记录下来。同桌交流,挑选两种情况展示汇报:你是怎么想的。媒体演示:连线法;编号列举等。现在,你觉得哪种记录方法既快又简便?

  6、小结:同学们,刚才我们通过连一连、排一排、算一算的方法来解决衣服的搭配问题。

  (二)情境二:游乐活动中的数学问题

  出示教科书第115页第2题图

  1、引导观察:我们来到儿童乐园,从儿童乐园经过百鸟园到猴山去玩,有几条不同线路?

  2、学生独立思索,指名回答,师:你是怎么想的?这样说大家听得不太明白,有什么办法使别人一听就明白?(编号)。师:儿童乐园到百鸟园有几条路?从百鸟园到猴山有几条路?在媒体上出示编号①②③④⑤ 。

  3、师:现在你能说出有哪几条不同的线路?

  4、反馈:根据学生的回答课件展示线路。

  5、小结:通过编号后列举、或用乘法能帮助我们快速解决问题。

  (三)情境三: 拍照

  1、师:从猴山出来,聪聪、明明在数学乐园欢迎同学们到来,让我们用刚才学到的方法来当一回摄影师。

  (1)出示问题1:同学们都想单独和聪聪、明明各合一张影,一共要照多少张?学生在书上表示。

  (2)反馈交流:你是怎样想的?(连线或乘法)

  (3)课件演示学生的想法。

  2、出示问题2。师:每人和聪聪、明明单独拍完照后,小明还想和聪聪、明明合影留念,三个人站成一行,一共可以拍多少张不同排法的照片?可以想什么办法清楚地表示出来?

  (1)独立思考。(2)小组交流问题的解决方法。(3)交流汇报:你可以想什么办法来表示?生1:可以列举;生2:可以编号。师:编号是个好办法!我们给三个人编上号码①②③,请你用数字卡片排一排,然后把各种排法记录下来。

  (4)汇报交流:挑选不同排法的学生在黑板上展示,说说是怎么排的,有不同的排法吗?讲评:怎样排列才能做到既不重复也不遗漏?(媒体演示排的过程)排在1号位上有几种情况,确定好1号位后,排在第2、3号位又有几种情况?所以得到6种排法。

  (5)小结:解决这个问题时首先考虑想什么办法,接着想第一步有几种情况,再考虑第二步有几种情况,然后进行搭配或用乘法表示。

  [设计意图]虽然都是拍照的情境,问题1着重巩固解决搭配问题的不同思维形式。问题2着重联系生活实际,构建解决排列问题的数学模型。要解决三人合影的排列问题,实际将其转化为1、2、3这三张卡片有几种不同的排法。让学生通过动手操作、有序思考来解决。

  (四)情境四:破译密码

  1、(课件出示密码门)师:我们来到数学乐园门口,发现门紧锁着,想要出门必须先破译门锁上的密码。这密码是由三个数字7、8、9 组成的一个三位数,猜一猜可能是哪个密码。

  问:如果不告诉你正确的密码,至少需要试几次才能保证把门打开?

  2、师:要求至少需要试几次才能保证把门打开,实际要知道什么?(用7、8、9可以摆出几个不同的三位数。)

  3、师:请大家把结果记录在练习纸上。

  4、汇报交流,挑选不同的排法在黑板上展示,说说是怎么想的。

  5、小结:(媒体演示)在排列要做到有序,可以先确定百位上的数,再依次确定十位和个位上的数。现在你知道至少需要试几次才能保证把门打开?

  师:(媒体出示)这个密码是由7、8、9三个数字组成的最大的三位数,那么它是多少?987。[设计意图] 此环节对拍照情境中问题2的应用,创设破译密码的情境,激发学生的好奇心。由于问题比较宽泛,给学生探索和想象的空间,从学生的动手操作,交流汇报到策略的总结,注重有序思考方法的渗透,体验、经历数学活动的过程。

  三、小结拓展

  1、师:今天我们参加了数学广角活动,你有什么收获?生活中哪些地方可用到搭配中的学问?

  2、师:在今后的学习和生活中,还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决。有兴趣的同学可以上网继续参与数学广角活动,提供活动资源链接。

  [设计意图]小结收获,把学生的眼光引向生活,感受生活中的数学,尤其是课外活动资源的链接把学生引入新的境界,充分实现课程资源的开发和利用。

  四、做一做

  1、完成115页第1题

  2、完成116页第4、5、6题

  3、完成112页“做一做”

《广角》教案8

  设计说明

  《数学课程标准》中指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。”逻辑推理是进一步学习数学的基础,为打好这个基础,本设计注重通过游戏活动让学生理解逻辑推理的含义,体验推理的过程。同时帮助学生建立多种推理模式,并学会用语言表述推理过程。

  1.通过游戏活动激发兴趣,经历推理过程,理解推理含义。

  低年级的学生对游戏永远充满了兴趣。首先出示双胞胎的照片,在没有任何提示的情况下让学生进行猜想,进而引导学生了解要想猜对必须要有提示,体验所给的提示不同,所猜的结果也不一样,调动学生猜的兴趣和积极性。然后通过猜书活动、填数活动,引导学生根据已知条件进行判断并得出结论,使学生经历推理过程,并初步理解逻辑推理的含义,即推理就是我们根据已知条件获得一个结论的方法。

  2.帮助学生建立多种推理模式,并学会用语言表达推理过程。

  在小学阶段主要是发展学生合情推理的能力。合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。由于学生在推理的`过程中基本都是借助语言表述,因此本设计注重引导他们借助表格来推理,也可以借助连线来推理,简化了推理过程,感受思考问题方式的多样性和简洁性。同时培养学生在推理的过程中做到言之有理、落笔有据。让学生根据所给的提示,清晰地表述自己在推理过程中的想法。语言是思维的外壳,只有想得清,才能说得明。最后在教学中给学生留下一部分空间让其交流、表达,培养了学生的表达能力。

  课前准备

  教师准备 PPT课件

  学生准备 表格

  教学过程

  ⊙创设情境,引入新课

  1.导语:新学期开始,班里来了一对双胞胎兄弟,哥哥叫大壮,弟弟叫小壮(课件出示),你能分清谁是哥哥,谁是弟弟吗?为什么?

  (学生自由讨论,汇报)

  生:我分不清,因为他们长得一模一样。

  2.过渡:老师帮你们一下。(课件演示)其中的一个说:“我不是哥哥。”现在你们能分清谁是哥哥,谁是弟弟吗? 说明理由,为什么作出这样的判断。

  (学生在小组内交流,然后全班汇报)

  3.揭示课题:刚才同学们根据双胞胎兄弟中一人的话,判断出了谁是哥哥,谁是弟弟,这种推理方法叫排除法。你们能根据老师给出的提示得出正确的结论,这样的思维过程叫推理。其实这样的推理在我们的生活中运用得非常广泛,生活中有许多的事情需要我们根据已知条件来进行推理,今天我们就来学习简单的推理。(板书课题)

  设计意图:从生活中常见的实际问题引入,判断哪个人是哥哥,哪个人是弟弟,学生的积极性被调动起来,同时也让学生感受到数学与生活的密切联系。

  自主学习,探究新知

  一、教学教材109页例1。

  1.课件出示教材109页例1,整理信息。

  (1)教师引导学生仔细观察图片,把整理出的数学信息进行交流。

  (2)学生反馈:有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红说:“我拿的是语文书。” 小丽说:“我拿的不是数学书。” 问题是小刚拿的是什么书,小丽拿的是什么书。

  (3)教师提示:刚才的这段话里包含着一些信息,我们需要把这几句话整理一下才能作出准确的判断,这就是整理信息。

  2.探究方法。

  (1)教师组织学生先独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,然后小组交流。

  (2)指名汇报。

  预设

  生1:可以把人名和书名写成两行,根据条件连线。小红拿的是语文书,就直接连线,剩下的小丽和小刚就只能连数学书和品德与生活书。小丽说她拿的不是数学书,那小刚拿的就是数学书,把小刚和数学书连上。最后把小丽和品德与生活书连上。

  生2:通过分析,我知道小红拿的是语文书,那小丽和小刚拿的就是数学书和品德与生活书。小丽说她没拿数学书,那就是说小丽拿的是品德与生活书,则小刚拿的是数学书。

  3.明确思考关键。

  (1)质疑:为什么几位同学叙述自己的思考过程时都从“小红拿的是语文书”开始呢?

  (2)学生小组交流,汇报。明确推理应抓住关键信息,层层分析,最终推导出结论。

  (3)师生共同总结:推理时,一般先找到最关键的条件,根据这个条件往往能得到一个结论,这个结论可以帮助我们进行下一步推理。实际推理时,方法有很多,边读边思考是推理的一种方法。连线法和列表法能让我们的推理过程更简洁、直观,我们可以根据需要选择合适的推理方法。

  二、教学教材110页例2。

  1.课件出示教材110页例2。

  (1)读题思考,然后说说你知道了什么信息。

  (2)提示:你们首先能确定哪行哪列的数?

  (先看哪一个空格所在的行和列出现了三个不同的数,这样就能确定这个空格应填的数)

  A是几?你是怎么想的?B是几?你是怎么想的?接着该怎么填?

  2.探究方法。

  (1)学生在小组内讨论、交流,说一说自己的想法。

  (2)指名汇报。

  (3)小组派代表上台讲解。

《广角》教案9

  教学内容:义务教育课程标准实验教科书(人教版)三年级上册第三者112页例1简单的组合。

  教学目标:

  1、通过观察、猜测、操作等活动,找出最简单的事物的组合数。

  2、经历探索简单事物组合规律的过程。

  3、培养学生有顺序地全面地思考问题的意识。

  4、感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:经历探索简单事物组合规律的过程。

  教学难点:能用不同的方法准确地计算出组合数。

  教具准备:教学课件学具准备:每生准备主题图中相关的学具卡片或实物。

  教学过程:

  (一)创设问题情境:

  师:小朋友,你们喜欢老师漂亮一点呢还是喜欢老师丑一点?

  生:大多数的小朋友说喜欢老师漂亮。

  师:那你们帮助老师打扮打扮。我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。

  师:谢谢。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?

  老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?

  (二)1.自主合作探索新知试一试

  师:请同学们也试着想一想,如果你觉得直接想象有困难的话可以借助手中的学具卡片摆一摆。

  学生活动教师巡视。

  2.发现问题

  学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复了,有的漏写了。

  3.小组讨论

  师:每个同学算出的个数不同,怎样才能很快算出两件上衣、三件下衣有多少种不同的穿法呢?并做到不重复不遗漏呢?

  学生以小组为单位交流讨论。

  4.小组汇报汇报时可能会出现下面几种情况:

  (1)、无序的。用学具卡片或实物摆,然后再数。

  (2)、用连线的方法算出。

  (3)、用图式的方法算出。

  引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

  5.小结教师简单小结学生所想方法引出练习内容见课本112页。

  (三)拓展应用

  数字2、3、4、5、6、7写出不同的.两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△

  请你试着摆出其他几种排法。

  教学反思:

  简单的排列(二)

  教学内容:义务教育课程标准实验教科书(人教版)三年级上册第九单元的例题2。

  教学目标:

  1、通过观察、猜测、操作等活动,找出最简单的事物的排列数。

  2、经历探索简单事物排列规律的过程。

  3、培养学生有顺序地全面地思考问题的意识。

  4、感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:经历探索简单事物排列规律的过程。

  教学难点:初步理解简单事物排列与组合的不同。

  教具准备:教学课件

  学具准备:每生准备3张数字卡片,学具袋。

  教学过程:

  (一)创设问题情境:

  师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?

  问题刚说完小动物们都纷纷举手说能写成两个数:12、21。

  接着猴博士又加上了一个数字3,问:用数字1、2、3能写出几个两位数呢?

  小猪站起来说能写成3个,小熊说6个,小狗说7个,到底能写出几个呢?

  小朋友们回答能写6个。

  请问:用数字1、2、3能写出几个三位数呢?

  (二)1.自主合作探索新知

  师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。

  学生活动教师巡视。

  2.发现问题

  学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。

  3.小组讨论

  师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的三位数,并做到不重复不遗漏呢?

  学生以小组为单位交流讨论。

  4.小组汇报汇报时可能会出现下面几种情况:

  (1)无序的。

  (2)从高位到低位,数字由小到大。先写出1在百位上的有123、132;再写出2在百位上的有213、231;再写出3在百位上的有312、321。

  (3)从高位到低位,数字由大到小等方法。

  5.小结教师简单小结学生所想方法引出练习内容:课本113页例2,小组讨论完成。

  (三)拓展应用1、数字2、3、4、5写出不同的三位数?写完交流。

  请你试着摆出其他几种排法。

《广角》教案10

  教学内容:

  课本P100页。

  教学目标:

  1、通过活动让学生感受简单推理的过程,初步获得一些简单推理的经验。

  2、培养学生的推理能力。

  3、培养学生的合作意识和创新精神。

  教具学具:

  动物图片、语文、数学、自然等教科书。

  教学过程:

  一、游戏一:

  故事导入:森林王国要举行运动会,入场时要组织一个花束队,鸡大婶让蓝猫和非非准备一束花,鸡大婶说:他们拿的分别是红花和蓝花。蓝猫说:我拿的不是红花。鸡大婶说:请同学们猜一猜,蓝猫和非非分别拿的是什么花?

  今天有许多这样的问题等着同学们去猜,大家要比一比谁最爱动脑筋。

  [设计意图]:故事导入新课等于抓住了儿童的天性,激起了他们玩的乐趣和学习的积极性。

  二、游戏二:

  (1)出示例2的第一组图让学生注意观察。

  让学生猜一猜他们拿的是什么书?

  请学生说一说自己是怎样想的。

  (2)、小组活动

  4人一组,两名同学分别拿语文数和数学书,其中一名同学说:我拿的.不是什么书。另外两名同学比赛看谁猜得快。交换进行。

  (3)、同桌活动。

  拿出准备好的动物卡,又一名同学操作,左(右)手拿的是(不是)什么,另一名学生猜,交换进行。

  三、游戏三:

  1、找三名同学配合,创设真实情景,根据例题做一做,让学生猜一猜,说一说是怎样想的。

  2、小组活动

  A、师:把猜一猜的游戏规则说一说。4人一组轮流进行,每人至少猜一次。

  B、进行活动。教师不做任何规定,让学生撇开思维,自己去猜。

  C、小组交流,向全班汇报活动过程。

  3、观察比较例3和例2有什么不同?学生回答后教师总结。

  4、巩固练习:师生一起做游戏。

  [设计意图]:通过多种游戏活动,既给了学生充分的时间活动,一起在活动中探索新知。放手让学生随意玩,鼓励他们玩出新意,教师捕捉创新的火花,培养他们的求异思维。

  五、课堂总结

  这节课我们上得真愉快,你们在游戏中都学会了什么?

  教学反思:

《广角》教案11

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的'小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

《广角》教案12

  教学目标:

  1.让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的思想方法。

  2.培养学生有序地、全面地思考问题的意识和合作学习的习惯。

  教学重点:

  利用天平或跷跷板的.原理,使学生在解决实际问题的过程中初步体会等量代换的思想方法,为以后学习代数知识做准备。

  教学难点:使学生会运用等量代换这一数学思想方法来解决一些简单的实际问题或数学问题。

  教具、学具:卡片、课件

  教学过程:

  一、创设情境、提高兴趣

  1. 师:同学们,我们的童年生活在丰富多彩、游戏多种多样,跷跷板就是其中之一,你们玩过吗?好玩吗?(自由回答)

  师:想一想,玩跷跷板的两个人在体重上有什么要求?

  生:两人体重不能相差太多。

  师:三四班的甲同学体重50千克、乙、丙分别重25千克,假如甲和乙玩跷跷板会出现什么情况?

  生画图表示。

  师:如何使跷跷板平衡?

  生画图表示。

  2. 介绍天平

  师:天平的工作原理同跷跷板一样,下面请看大屏幕(flash画面伴有声音:同学们,大家好,我叫天平。在实验室里能见到我,当我平衡时,表示左右两边的物体同样重。)

  二、动手合作、探究就知

  1. 故事引入

  (flash画面伴有声音。)森林王国的熊妈妈生病了,小猴和小兔准备买东西去看望他。他们来到水果摊前,小猴对小兔说:“西瓜又大又甜,我们就买它吧。”于是他俩把西瓜放到天平上称了称,发现一个西瓜重4千克,小猴提了提:“哎呀,太沉了,我提不动。”小兔试了试:“我也不行。”正在他们俩不知怎么办时,售货员叔叔说:“西瓜和苹果都是1千克2元钱,你们可以把西瓜换成苹果,这样就一人一半了。”“对呀!叔叔的主意好。”他俩高兴地说:“一个西瓜4千克,4个苹果1千克,假如每个苹果同样重,1个西瓜能换几个苹果?小朋友,你能帮我们算一算吗?”

  ①抓住时机,对学生进行思想教育,学会关心别人;

  ②师:你得到了哪些数学信息?

  生:从第一个图中看出,一个西瓜重4千克,从第2个图中看出4个苹果1千克,问题是一个西瓜和几个苹果同样重?

  师:请同学们用学具摆一摆。(教师巡视,适当指导)

  学生讲思路。

  师:熊妈妈见到两位小客人,心情十分高兴,病也好了一大半,决定邀请小猴和小兔去动物园逛逛,他们看到了什么?请看大屏幕。

  ①P109做一做。

  (flash画面伴有声音:森林王国动物园的跷跷板平衡游戏开始了。“我小猪先坐上去,谁来和我玩呀?”“小猪等等我,我们和你玩,呵,跷跷板平衡了。”“你们玩的这么开心,我也来凑凑热闹吧!”“老牛,我们四头小猪站在一起才能和你玩啊!”同学们,两头牛和几只羊站在一起才能使跷跷板平衡呢?)

  学生找出条件和问题。

  师:2头牛等于几只羊?应怎样思考,自己想一想,再交流讨论。

  师:边播放课件边讲解。

  ②看大屏幕(练习二十四4题)

  (flash画面伴有声音:“小鸡,你比我轻,我不想和你玩。”“臭鸭子,你才比我轻呢!我还不想和你玩呢。”在一旁的鹅听到后,赶紧跑来劝架:“别吵了,我和你们一起玩吧!”孩子们看到这里,你们知道一只鸡和一只鸭谁重一些?)

  学生讨论,汇报结果。

  播放课件,讲解。

  三、拓展内化 解决问题

  师:参观完动物园后,在回家的路上又碰到什么情况了?

  看大屏幕(练习二十四.3)

  (flash画面伴有声音:“灰兔哥哥,今天我们真是大丰收,我采了大萝卜,你采了这么多胡萝卜和白菜,我想用9个大萝卜换3棵白菜,行吗?”“白兔弟弟,行,那我也用6个胡萝卜换2个大萝卜吧。”等量代换游戏开始了,你们知道6棵白菜能换几个胡萝卜吗?)

  师:提示先求1棵白菜能换几个胡萝卜?

  学生可用学具摆一摆。

  课件展示:

  9个大萝卜=3棵白菜→3个大萝卜=1棵白菜

  6个胡萝卜=2个大萝卜→3个胡萝卜=1个大萝卜

  6棵白菜=?胡萝卜→1棵白菜=?胡萝卜

  (54) ← (9)

  四、布置作业(练习二十四.5)

《广角》教案13

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

  找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

  本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  教学目标

  知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学方法

  1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

  2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  教学过程

  课前谈话

  出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的`特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

  出示天平。说说怎样利用天平来找出这瓶钙片呢?

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

  找次品的解决方法

  小组合作:从5瓶钙片中找出少装了的那瓶次品。

  (合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1) 1次或2次

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  探索最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

  零件个数

  分成的份数

  每份的个数

  至少称几次就一定能找到这个次品

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,根据学生的回答填表并板书:

  平衡 3(1,1,1)

  9(3,3,3)

  不平衡3(1,1,1) 2次

  平衡1

  9(4,4,1) 平衡2(1,1) 3次

  不平衡4(1,1,2)

  不平衡1

  平衡1

  平衡(2,2,1)

  9(2,2,2,2,1) 不平衡2(1,1)3次

  不平衡2(1,1)

  9(1,1,1,1,1,1,1,1,1) 4次

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  小结:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

  不能平均分成3份的应该怎样分呢?

  全班合作:用图示法从10个和11个零件中找出一个次品。

  (合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

  你知道这是为什么吗?你能不能对这个规律作出解释?

  [设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

  拓展提高

  猜测:这种方法在待测物品的数量更大时是否也成立呢?

  第135页做一做:

  有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

  请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

  《找次品》教学反思

  著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

  从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着

  让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

  然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

  接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

  为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

《广角》教案14

  教材分析

  1、教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法“有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。

  2、配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的.方法来解决这类问题。

  学情分析

  1.学生思维面比较窄,基础弱,学生部分接触过“鸡兔同笼”问题,多数学生对独立学习“鸡兔同笼”问题存在一定的难度。所以在这节课中,我们就可以采用适当教学手段适时引导和学生小组合作探究相结合的教学方式,让学生在尝试,探索,交流合作中弄懂“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同”问题的过程,初步形成解决此类问题的一般性策略。

  2.本课有三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

  3.学生认知障碍点:假设法的理解。

  教学目标

  1.使学生掌握用列表法、假设法、方程法解决问题。

  2、通过自主探索,合作交流,让学生用不同的方法解决“鸡兔同笼”问题。

  3、使学生感受数学问题的趣味性,提高学习数学的兴趣。

  教学重点和难点

  教学重点:尝试用不同的方法解决“鸡兔同笼”问题。

  教学难点:理解运用假设法解决“鸡兔同笼”问题的算理。

《广角》教案15

  班级学情分析:

  我校三年级共有学生43人,大多数数学学习能力较强,但是优劣差距较大,所以教学起来还是有一定困难的。

  教学目标:

  1、通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。

  2、培养学生初步的观察、分析能力和有序的、全面思考问题意识。

  3、培养学生大胆猜想、积极思维的学习品质。

  4、通过学习学生能应用排列组合的知识解决生活中的实际问题。

  教学重点:经历探索简单事物两两组合规律的过程

  教学难点:能用不同的方法准确地计算出组合数。

  教学用具:课件、卡片、铅笔、直尺等。

  教学过程:

  一、创设情境,激趣导入:

  师:小朋友们喜欢什么样的球类运动呢?

  (让学生各抒已见。)当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。

  二、引导参与:4人小组合作完成。然后汇报,并说理由。

  三、共同探究:

  师:20xx年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。

  师:如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)

  1、让学生大胆说一说、猜一猜。

  2、四人小组用学具卡片摆一摆、讨论讨论。

  3、学生汇报。

  4、汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。

  5、一小组演示。

  6、其他同学认真观看。

  8、然后在相互探讨、补充。

  9、力求能准确算出比赛场数。

  10、方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。

  11、师生共同。

  A、用画“正”字数出要踢多少场。

  B、把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。

  C、把巴西、土耳其、中国、哥斯达黎加四个国家摆在一直线上在用连线的方法求出场数。

  13、用课件将上面第二、第三种方法直观演示。

  14、让学生把这些抽象的知识直观化、具体化。

  15、老师总结。

  刚才同学们有的用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的,用哪一种方法求都可以,只要这种方法是你喜欢的`。

  课堂练习:

  比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?

  (1)进行礼仪教育。

  (2)四人小组进行实践。

  (3)请1-2个小组代表上台演示。

  作业设计:

  提问:如果是5个运动员每两人握一手,一共要握几次手呢?

  我的问答:

  课堂是以学生为主体的, 所以学生的主体地位在任何时候都要放在首位,但这一点也是许多教师都犯的一个通病,把课堂看做自己表演的舞台,给学生留的空间很少,这就我自己认为是错误的,你说呢!

【《广角》教案】相关文章:

广角镜头和超广角镜头的优势09-05

什么是广角镜10-27

《数学广角》教学反思01-27

《数学广角》教学反思04-06

数学广角教学反思03-22

如何正确使用广角镜头和超广角镜头09-26

四年级上册数学广角教案02-01

佳能广角镜头推荐08-19

广角定焦镜头的使用技巧08-13