五年级数学教案:平行四边形面积的计算简案

时间:2024-06-03 10:42:43 教案 我要投稿
  • 相关推荐

五年级数学教案:平行四边形面积的计算简案

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?下面是小编整理的五年级数学教案:平行四边形面积的计算简案,欢迎阅读,希望大家能够喜欢。

五年级数学教案:平行四边形面积的计算简案

  教学内容

  使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  教学目标

  理解公式并正确计算平行四边形的面积

  知识重点

  理解平行四边形面积公式的推导过程

  教学难点

  教学过程

  教学方法和手段

  引入

  1、什么是面积?2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  教学过程

  一、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、讲授新课

  (一)、数方格法

  用课件投影出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  3、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  4、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  5、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的式子里,字母和字母中间的乘号可以记作“?”,写成a?h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a?h,或者S=ah。

  (6)完成第81页中间的“填空”。

  6、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  小结与作业

  课堂小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  课后追记

  本课利用数格子和割补法来求平行四边形的面积。利用“割”或者“补”的方法,或者两者配合使用是将未知图形化成已知图形的一种常用手段和方法。这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。

【五年级数学教案:平行四边形面积的计算简案】相关文章:

五年级数学教案:平行四边形面积的计算04-10

五年级数学教案:《平行四边形面积的计算》06-03

《平行四边形面积的计算》教案09-14

平行四边形面积的计算教学反思12-28

《面积计算》教案03-09

六年级数学教案《平行四边形面积的计算》04-08

人教版五年级上册《平行四边形的面积》数学教案01-17

梯形面积的计算教案04-12

沪教版五年级上册《平行四边形的面积》数学教案01-17

幼儿园语言教案简案11-28