- 相关推荐
矩形判定教案
作为一名默默奉献的教育工作者,就不得不需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?下面是小编整理的矩形判定教案,欢迎阅读与收藏。
矩形判定教案1
一.学生情况分析
学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。
二.教学任务分析
教学目标:
知识目标:
1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。
2.掌握正方形的性质定理1和性质定理2。
3.正确运用正方形的性质解题。
能力目标:
1.通过四边形的从属关系渗透集合思想。
2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。
情感与价值观
1.通过理解四种四边形内在联系,培养学生辩证观点
教学重点:正方形的性质的应用.
教学难点:正方形的性质的应用.
三、教学过程设计
课前准备
教具准备: 一个活动的平行四边形木框、白纸、剪刀.
学生用具:白纸、剪刀
教学过程设计分成四分环节:
第一环节:巧设情境问题,引入课题
第二环节:讲授新课
第三环节:新课小结
第四环节:布置作业
第一环节 巧设情境问题,引入课题
进入正题,提出本节课的研究主题正方形
第二环节 讲授新课
主要环节
(1)呈现两种通过不同途径得到正方形的过程,给正方形下定义
(2)讨论正方形的性质
(3)通过练习加强对正方形性质的理解
(4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。
(5)寻找正方形的判定方法
目的:
1. 正方形是特殊的.平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。
2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。
大致教学过程
呈现一个平行四边形变成正方形的全过程.(演示)
由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.
这个变化过程,可用如下图表示
由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.
这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.
这个变化过程,也可用图表示
你能根据上面的变化过程,给正方形下定义吗?
一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.
因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质.
正方形的性质:
边:对边平行、四边相等
角:四个角都是直角
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
正方形是轴对称图形吗?如是,它有几条对称轴?
正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线.
例题
[例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数.
分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.
解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45
拿出准备好的剪刀、白纸来做一做
将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)
只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.
正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?
正方形、矩形、菱形及平行四边形四者之间有什么关系呢?
它们的包含关系如图:
此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?
先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.
由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断.
第三环节 课堂练习
教材 随堂练习1,2
第四环节 课时小结
正方形的定义:一组邻边相等的矩形.
正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)
第五环节 课后作业
课本习题4.7 1,2,3.
四.教学设计反思
在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。
为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。
矩形判定教案2
教学目标:
掌握矩形的判定定理,能综合运用矩形的知识解决有关问题.
教学重点和难点:
矩形的判定方法的理解和灵活运用.
教学过程设计
一、逆向联想、研究矩形的判定方法
1、复习矩形与平行四边形及四边形的从属关系
2、复习矩形的定义,并指出由平行四边形得到矩形需添加一个独立条件,思考:由四边形得到矩形需要添加几个独立条件?
3、复习矩形的性质,并指出性质定理1可改为“矩形中三个角是直角”这样的三个独立条件.
4、在复习提问的同时,逐步完成下图:
5、逆向探索矩形的判定方法.
(1)猜想矩形性质的逆命题成立。
①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形.
(2)证明猜想,得到两个判定定理.
(3)由矩形和平行四边形及四边形的从属关系将矩形的`判定方法分为两类:
①从四边形出发增加三个特定的独立条件;
②从平行四边形出发增加一个特定的独立条件.
一、应用举例
例1 下列各句判定矩形的说法是否正确?为什么?
( 1)对角线相等的四边形是矩形;( ×)
(2)对角线互相平分且相等的四边形是矩形;(√)
(3)有一个角是直角的四边形是矩形;(×)
(4)有四个角是直角的四边形是矩形;(√)
(5)四个角都相等的四边形是矩形S;(√)
(6)对角线相等,且有一个角是直角的四边形是矩形;(×)
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(8)对角线相等且互相垂直的四边形是矩形.(×)
说明:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与定理不同,则需要利用定义和判定定理证明或举反例,才能下结论.
例2已知 ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm.求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为
例3已知:如图4-38在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形.
分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。
例4已知:如图4-39(a), ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH.
分析:要证的EG,FH为四边形EFGH的对角线,因此只需证明四边形EFGH为矩形,而题目可分解出基本图形:如图4-39(b),因此,可选用“三个角是直角的四边形是矩形”来证明.
练习已知:如图 4-40,在△ABC中,∠C= 90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
三、师生共同小结
矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.
常用的判定方法有三种:定义和两个判定定理.遇到具体题目,可根据条
件灵活选用恰当的方法.
四、作业
课本第160页第3 4题,第192页第8题.
矩形判定教案3
教学目标:
1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想
教法设计:观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.
教学重点:矩形的判定.
教学难点:矩形的 判定及性质的综合应用.
教具学具准备:教具(一个活动的平行四边形)
教学步骤:
一.复习提问:
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
二.引入新课
设问:1.矩形的判定.
2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的.方法,下面就来研究这 些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)
矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)
归纳矩形判定方法(由学生小 结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2 .矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用。(让学生思考,然后师生共同完成)
例:已知 的对角线 , 相交于
,△ 是等边三角形, ,求这个平行
四边形的面积(图2).
分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .
三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形-是矩形。
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
补充例题
例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
AC=BD
AC、BD互相平分于O
AO=BO=CO=DO
∵AE=BF=CG=DH
EO=FO=GO=HO
又HF=EG
EFGH为矩形
例2:判断
(1)两条对 角线相等四边形是矩形()
(2)两条对角线相等且互相平分的四边形是矩形()
(3)有一个角是 直角的四边形是矩形( )
(4)在矩形内部没有和四个顶点距离相等的点()
分析及解答:
(1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,
(2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形
(3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形
(4)矩形 对角线的交点O到四个顶点距离相等,如图(3),
矩形判定教案4
教学目标
1、理解并掌握矩形的判定方法。
2、使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
教学重点
矩形的判定。
教学难点
矩形的判定及性质的综合应用。
教学步骤
一、知识回顾
1、矩形的定义:有一个角是直角的平行四边形叫做矩形(定义判定)
几何语言:
∵ ∠A=90° 平行四边形ABCD (已知)
∴ 四边形ABCD是矩形(矩形的定义)
2、矩形的性质:
角:矩形的四个角都是直角
对角线;矩形的对角线相等
对称性:中心对称和轴对图形。
3、直角三角形斜边上的中线等于斜边的一半
二、新知探究
除了定义判定之外,你还有其它的判定方法吗?
(一)、情境一:李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”这样,她说这就是一个矩形,她的判断对吗?为什么? 你也画一画?会是矩形吗?
1、 猜想矩形的判定,它是矩形哪个性质的逆命题。用自己的语言说。教师板书:有三个直角的四边形是矩形。
2、要求学生用语言叙述证明这个定理的证明思路。(提示学生要证明与定义符合,)
3、定理的`几何语言。
在四边形ABCD中
∵ ∠A= ∠B= ∠C= 90°(已知)
∴ 四边形ABCD是矩形(有三个直角的四边形是矩形)
(二)、情境二:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?
1、 猜想矩形的判定,它是矩形哪个性质的逆命题。用自己的语言说。
2、要求学生用语言叙述证明这个定理的证明思路。(提示学生要说明与定义符合教师用课件演示证明过程)
3、定理的几何语言。
∵ AC= BD, ABCD是平行四边形(已知)
∴ ABCD是矩形(对角线相等的平行四边形是矩形)
(三)归纳矩形的三种判定方法
方法1:有一个角是直角的平行四边形是矩形。
方法2:有三个角是直角的四边形是矩形 。
方法3:对角线相等的平行四边形是矩形 。
三、学以致用
(一)例、已知MN∥PQ,同旁内角的平分线AB、BC和AD、CD分别相交于点B、D。
(1)说说AB和CD、BC和AD的位置关系?
(2) ∠ABC 、 ∠BCD、 ∠CDA、 ∠DAB各等于多少度?
(3)你能判定四边形ABCD是矩吗?为什么?
(4)AC和BD有怎样的大小关系?为什么?
要求学生用语言说理表达。
(二)、随堂练习:
1、下列四边形中不是矩形的是( )
A、有三个角是直角的四边形是矩形
B、四个角都相等的四边形
C、一组对边平行且对角相等的四边形
D、对角线相等且互相平分的四边形
2、如果E、F、G、H是四边形ABCD四条边的中点,要使四边形EFGH是矩形,那么四边形ABCD应具备的条件是( )
A、一组对边平行而另一组对边不平行
B、对角线相等
C、对角线互相垂直
D、对角线相等互相平分
3、已知:如图,平行四边形 ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形。
4、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm。
(1)平行四边形是矩形吗?说明你的理由。
(2)求这个平行四边形的面积。
四、小结:
矩形的三种判定方法
方法1:有一个角是直角的平行四边形是矩形。
方法2:有三个角是直角的四边形是矩形 。
方法3:对角线相等的平行四边形是矩形 。