《三角形内角和》数学教案

时间:2024-07-17 08:51:05 炜玲 教案 我要投稿

《三角形内角和》数学教案(通用19篇)

  作为一名优秀的教育工作者,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?以下是小编为大家整理的《三角形内角和》数学教案,希望对大家有所帮助。

《三角形内角和》数学教案(通用19篇)

  《三角形内角和》数学教案 1

  教学目标

  知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。

  过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。

  情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。

  重点难点

  教学重点:

  探究发现三角形的内角和是180度。

  教学难点:

  在猜想和验证三角形内角和的过程中发展空间观念。

  教学过程

  活动1【导入】理解内角、内角和概念

  1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?

  Q:结合谜面的信息来说一说三角形有什么特点?

  2、介绍内角:这三个角都在三角形的里面,又叫内角。

  Q:三角形有几个内角?

  3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。

  引出课题:今天我们就来研究三角形内角和。

  活动2【活动】观察图形

  1、观察图形的变与不变

  ppt依次出示

  Q:这是锐角三角形,什么是它的内角和?

  出示直角三角形,它的内角和是指?

  出示钝角三角形,内角和是指?

  质疑:哪个三角形的内角和最大?

  预设1:钝角三角形内角和大。(说想法)

  预设2:一样大。(说想法)

  预设3:180度。

  小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。

  (二)活动二:猜想内角和不变的度数

  Q:这个一样的`度数是多少?你是怎么知道的?

  预设1:听说过,学过。

  预设2:直角三角尺上三个角的度数和是180度。

  预设3:等边三角形。

  这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。

  活动3【活动】测量验证

  (一)思考量的方法和原因

  过渡:你想怎么研究?(用量角器去量)

  Q:谁来介绍介绍量的方法?

  预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。

  (二)动手测量

  PPT:操作建议:

  1、请你找到三角形的三个内角,用彩笔标序号1、2、3。

  2、用量角器仔细测量后,记录角的度数。

  3、列式计算出三角形内角和度数。

  动手测量

  (三)汇报交流:

  学生1展示测量的过程。

  Q:还有谁测量的这个锐角三角形,说一说?

  追问:为什么同一个三角形内角和度数却不一样?

  Q:你在测量的过程中遇到了什么困难?

  Q:观察这些数据,虽然都不太一样,但是都很接近?

  小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。

  活动4【活动】拼角验证

  (一)思考其它验证方法

  Q:你还有其他的方法吗?

  预设1:学生没有反应。

  师引导:说到180度,你想到什么角?(平角)

  预设2:撕拼法

  Q:怎么把三个内角拼在一起?

  (生不撕,教师帮助突破,撕下三个内角。)

  Q:你能在投影上拼一拼吗?

  预设3:折叠法

  你的方法也很好,你们听懂了吗?一会儿可以试试。

  预设4:描画法

  Q:怎么描?你能演示一下吗?

  其他同学观察他在做什么?

  引语:刚才说的方法都很好,下面我们自己来试一试。

  (二)动手拼一拼

  操作要求:

  1、请你用彩笔在纸上随意画一个三角形,并剪下来。

  2、用彩笔标出三个内角。

  3、尝试操作。

  动手操作

  (三)汇报交流

  Q:你是怎么研究的?发现了什么?

  (四)小结

  刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。

  活动5【活动】几何画板验证

  引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。

  师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。

  观察:老师拉动一个顶点,什么变了?什么没变?

  小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。

  活动6【练习】基础练习

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一个锐角是40°,求另一个角?

  3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?

  4、拼三角形

  师:两个180°不是360°吗?

  小结:看来,组合以后的图形还要分清楚哪些是内角。

  活动7【练习】拓展练习

  (一)拓展练习

  今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?

  课件演示。

  说说这节课你的收获?

  《三角形内角和》数学教案 2

  教学内容

  义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

  设计思路

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的`度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  教学目标

  1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教材分析

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  多媒体课件、学具。

  教学过程

  一、激趣引入

  (一)认识三角形内角

  师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  生1:三角形是由三条线段围成的图形。

  生2:三角形有三个角,……

  师:请看屏幕(课件演示三条线段围成三角形的过程)。

  师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:只能画长方形。

  师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

  生:想。

  师:那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

  生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

  师:也就是这个三角形各角的度数。它们的和怎样?

  生:是180°。

  师:你是怎样知道的?

  生:90°+60°+30°=180°。

  师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

  师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  生:90°+45°+45°=180°。

  师:从刚才两个三角形内角和的计算中,你发现什么?

  生1:这两个三角形的内角和都是180°。

  生2:这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1.猜一猜。

  师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2.操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

  师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

  (2)小组汇报结果。

  师:请各小组汇报探究结果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  (三)继续探究

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  《三角形内角和》数学教案 3

  【教学目标】

  1、知识与技能:

  (1)理解和掌握三角形的内角和是180°。

  (2)运用三角形的内角和知识解决实际问题和拓展性问题。

  2、过程与方法:

  (1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  (2)知道三角形两个角的度数,能求出第三个角的度数。

  (3)发展学生动手操作、观察比较和抽象概括的能力。

  3、情感态度与价值观:

  让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。

  【教学重、难点】

  教学重点:理解掌握三角形的内角和是180°。

  教学难点:运用三角形的内角和知识解决实际问题。

  【教具准备】

  教学课件、各种三角形

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语:

  形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一图形名称)

  2、猜三角形

  师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?

  3、引出课题。

  师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)

  二、探究新知

  1、三角形的内角和

  师:三角形内角和指的是什么?

  2、猜一猜。

  师:这个三角形的内角和是多少度?

  3、验证。

  让学生用自己喜欢的方式验证三角形的内角和是不是180°。

  4、学生汇报。

  (1)测量

  师:汇报的测量结果,有的'是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?

  (2)剪拼

  A、学生上台演示。

  B、请大家三人小组合作,用剪拼的方法验证其它三角形。

  C、师演示。

  (3)折拼

  师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

  (4)结论:三角形的内角和是180。

  (5)数学小知识。

  5、巩固知识。

  (1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?

  (2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。

  教师:为什么不是360°?

  三、解决相关问题

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  1、看图,求未知角的度数。

  2、判断。

  3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

  求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。

  (3)我有一个锐角是40°。

  4、求四边形、五边形内角和。

  四、总结。

  师:这节课你有什么收获?

  五、板书设计:(略)

  《三角形内角和》数学教案 4

  教学目标:

  掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

  重难点分析

  重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

  难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

  教学方法:

  1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的.空间思维能力,同时使学生养成独立思考的习惯。

  2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

  教学过程

  导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

  例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  (一)量一量:我们如何解决这个问题呢?

  同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

  (二)

  1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

  2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

  方法:

  A、拼一拼的方法

  B、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。

  同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关

  课堂练习(难点巩固)

  总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!

  《三角形内角和》数学教案 5

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

  重点、难点:

  经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

  三角形内角和是180°的探索和验证。

  教学过程:

  一、揭示课题

  1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)

  出示课件

  2、提出问题,为后面做铺垫。

  现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的.内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

  孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

  二、新授

  1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

  指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)

  师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?

  (三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)

  1、拼一拼,折一折

  孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)

  我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)

  通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°

  此时,这三个三角形还争吵吗?它们都心服口服了。

  孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?

  三、练习

  1、抢答游戏(答对的给你的那一小组加一分)

  ①

  这个三角形的内角和是多少度。

  ②

  把这个三角形平均分成两个小三角形,每个小三角形是多少度。

  ③

  这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?

  ④

  三个小三角形拼成一个更大的三角形,它的内角和是多少度?

  2、智慧角

  3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)

  4、知识扩展

  其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)

  出示课件

  孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!

  四、总结

  任何一个三角形不分大小,不分形状,它们的内角和都是180°

  《三角形内角和》数学教案 6

  教材分析

  教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

  三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

  学情分析

  学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。

  要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

  教学目标

  1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  教学重点和难点

  教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

  教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

  教学过程:

  (一)、激趣导入:

  1、认识三角形内角

  我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  (三角形是由三条线段围成的图形,三角形有三个角,…。)

  请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角

  形的内角。(这里,有必要向学生直观介绍“内角”。)

  2、设疑激趣

  现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)

  同学们,请你们给评评理:是这样吗?

  现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

  这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  师拿出两个三角板,问:它们是什么三角形?

  (直角三角形)

  请大家拿出自己的`两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)

  从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。

  这两个三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形内角和

  (1).猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2).操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  (可以先量出每个内角的度数,再加起来。)

  测量计算,是吗?那就请四人小组共同计算吧!

  老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

  (3)小组汇报结果。

  请各小组汇报探究结果

  提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  3继续探究

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

  (先小组讨论,再汇报方法)

  大家的办法都很好,请你们小组合作,动手操作。

  (2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)

  这两道题都有两种答案,到底哪个对?为什么?

  (学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

  (2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到最佳方法。

  学生汇报,在图中画上虚线,教师课件演示。

  请同学们自己在练习本上计算。

  (四)、课堂总结

  通过这节课的学习,你有哪些收获?

  《三角形内角和》数学教案 7

  今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

  一、教材分析

  “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

  二、教学目标

  1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

  2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

  3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

  三、教学重难点

  教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

  教学难点:采用多种途径验证三角形的内角和是180°。

  四、学情分析

  通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

  五、教学法分析

  本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

  六、课前准备

  1、教师准备:多媒体课件、三角形教具。

  2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

  七、教学过程

  (一)、创设情境,激趣导入

  导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

  课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

  (二)、自主探究、合作交流

  1、探索特殊三角形内角和

  拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

  三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

  90°+45°+45°=180°

  从刚才两个三角形内角和的计算中,你发现了什么?

  2、探索一般三角形的内角和

  一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

  3、汇报交流

  请小组代表汇报方法。

  1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

  没有统一的结果,有没有其他方法?

  2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

  3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

  4)教师课件验证结果。

  请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

  学生回答后教师板书:三角形的内角和是180°

  为什么有的小组用测量的方法不能得到180°?(误差)

  4、验证深化

  质疑:大小不同的三角形,它们的'内角和会是一样吗?(一样)

  谁能说一说不能画出有两个直角的三角形的原因?

  (三)、应用规律,解决问题:

  揭示规律后,学生要掌握知识,就要通过解答实际问题。

  1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

  第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

  第二关,提高练习,

  ①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

  让学生灵活应用隐含条件来解决问题,进一步提高能力。

  2、小组合作练习,完成相应做一做。

  (四)、课堂总结,效果检测。

  一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

  (五)作业课下继续探究三角形,看你有什么新发现。

  八、板书设计

  通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

  《三角形内角和》数学教案 8

  教学目标:

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:

  检验三角形的内角和是180°。

  教学难点:

  引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:

  问题情境与

  教师活动:

  学生活动媒体应用设计意图

  教学过程:

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的'表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、总结:这节课你有什么收获?

  《三角形内角和》数学教案 9

  【课程标准】:

  认识三角形,通过观察、操作、了解三角形内角和是180度。

  【学情分析】:

  学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

  【学习目标

  1、结合具体图形能描述出三角形的内角、内角和的含义。

  2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

  3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  【评价任务设计

  1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

  2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

  3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

  【重难点

  教学重点:探索和发现三角形的内角和是180°。

  教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

  【教学过程】

  一、复习准备。

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

  二、探究新知

  (一)创设情境,生成问题,认识三角形的内角及内角和

  (播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的`内角和是一样大的。”

  师:动画片看完了,请大家想一想,什么是三角形的内角和?

  师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

  多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

  (二)、引导猜测三角形的内角和是180度

  师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

  预设:学生回答直角三角形。

  师:你为什么这么认为呢?

  生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

  (三)、验证三角形的内角和是180度

  1.确定研究范围

  师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

  师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

  2.操作验证

  教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

  智慧锦囊:

  (1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

  (2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

  3.汇报交流

  师:谁来汇报你的验证结果?

  (1)测算法

  师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

  (2)剪拼法

  (3)折拼法

  师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

  (4)推算法

  ①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

  师直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

  课件演示

  ②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

  4.总结提炼

  师:孩子们,刚才我们通过“量——————推”的方法分类验证了三角形的内角和是( )度?

  现在可以下结论了吗?

  (板书:三角形三个内角和等于180°。)

  师:那在“三角形的争吵中”谁是对的?

  (四)利用三角形内角和是180解决问题

  1、看图,求出未知角的度数。

  2、书本85页“做一做”

  在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

  三、目标达成检测方案:

  1、求出三角形各个角的度数。

  2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

  四、课堂小结,提升认识

  同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

  师:是啊,今天我们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。我们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

  《三角形内角和》数学教案 10

  【设计理念】

  新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

  【教材内容】

  新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

  2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的'内角和是180°”。

  【教(学)具准备】

  多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习旧知 引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题 引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:

  (1)三角形的内角指的是哪些角?

  (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证 形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设: ①量算法 ②剪拼法 ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

  6、形成结论:任意三角形的内角和是180 °。

  四、应用结论 解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:用今天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测: 三角形的内角和是180°?

  验证: 量 拼

  结论: 任意三角形的内角和是180°

  《三角形内角和》数学教案 11

  教学目标

  通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

  教学重难点

  三角形的内角和

  课前准备

  电脑课件、学具卡片

  教学活动

  一、计算三角尺三个内角的和。

  出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

  引导学生说出90度、60度、30度。

  出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

  提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

  学生计算后指名回答。

  师:三角尺三个角的和是180度。

  二、自主探索,解决问题

  提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

  任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

  学生小组活动,教师了解学生情况,个别同学加以辅导。

  全班交流:让学生分别说出三个角的度数以及它们的`和。

  提问:你发现了什么?

  :任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

  三、试一试

  要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

  教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

  计算的结果为准。

  四、巩固提高

  完成想想做做的题目。

  第1题

  学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

  第2题

  指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

  第3题

  通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

  第4、5、6

  引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

  《三角形内角和》数学教案 12

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的.有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  《三角形内角和》数学教案 13

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

  2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

  3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

  二、说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。

  三,说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

  【设计意图】

  让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】

  引导学生提出合理猜测:三角形的内角和是180°。

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

  (3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

  (4)画:根据长方形的内角和来验证三角形内角和是180°。

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

  【设计意图】

  利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

  深化

  质疑: 大小不同的三角形, 它们的'内角和会是一样吗

  观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

  结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

  结论:活动角就是一个平角180°, 另外两个角都是0°。

  【设计意图】

  小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

  (五)应用

  1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

  2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】

  习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

  《三角形内角和》数学教案 14

  教学目标:

  1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

  2、已知三角形两个角的度数,会求第三个角的度数。

  3、培养学生动手实践,动脑思考的习惯。

  教学重点:

  了解三角形三个内角的度数。

  教学难点:

  理解三角形三个内角大小的关系。

  教具学具准备:

  课件三角形若干量角器剪刀。

  教材与学生

  教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

  学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

  教学过程:

  一、呈现真实状态。

  师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

  学生各抒己见。

  二、提出问题:

  师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

  (1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

  (2)组内交流。

  (3)全班交流。由小组汇报测出结果(三角形内角和)

  (4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

  三、自主探索、研究问题、归纳总结:

  师引导提问:三角形的内角和会不会就是180呢?

  (一)组内探索:

  (1)以小组为单位探索更好的办法。

  (2)以小组为单位边展示边汇报探索的过程与发现的结果。

  (有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

  (3)把你没有想到的方法动手做一次

  (使学生更直观地理解三角形的内角和是180的证明过程)

  (4)根据学生的反馈情况教师进行操作演示。

  (二)教师演示

  撕拼法

  1、教师取出三角形教具,把三个角撕下来,拼在一起

  2、师:这三个内角放在一起你有什么发现?

  生:发现三个内角拼成一个平角。

  师:平角是多少度呢?说明什么?

  生:180?说明三个内角和刚好等于180。

  师:这种方法是不是适用各种三角形呢?

  3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

  进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

  折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

  你们也来试一试好吗?

  在学生完成这一实践后肯定这一发现

  三角形三个内角和等于180?

  充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

  四、巩固练习,知识升华。

  1.完成课本第28页的“试一试”第三题。

  2.想一想:钝角三角形最多有几个钝角?为什么?

  锐角三角形中的两个内角和能小于90吗?

  3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

  试一试,看谁算得快。

  师:谁来说说自己的计算过程?

  角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

  生:它们的内角和都是 180 度。

  师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,我们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

  [回答可能有二]:

  (一种全部说是:)

  师:请问,你们是怎么想的,为什么这么认为?

  生: ……

  师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,我们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (一种有一部分同学说是,有一部分同学说不是:)

  师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,我们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (二)动手操作,探究新知

  师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

  生:我准备用量的方法。

  师:然后呢?

  生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

  师:说的真不错,还有没有其它的方法?

  生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

  生:……

  (如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

  师: 好啦, 老师相信我们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。我们比一比,看一看,哪个小组的方法多,方法好!

  开始吧!(学生研究,师巡回指导)预设时间:5 分钟

  师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

  师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

  ( 预设: 如果第一类同学说的是量的方法)

  师:你是用什么来研究的?

  生:量角器。

  师: 那请你说一下你度量的结果好吗?

  ( 生汇报度量结果)

  师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

  生:180 度。

  师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

  生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

  师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

  师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

  生:我们还用了折的方法(生介绍方法)

  师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的`这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

  生:是个平角。180 度。

  师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

  师:请这位同学来说给大家听听吧!

  生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

  师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

  生 1 :量的不准。

  生 2 :有的量角器有误差。

  师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

  师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

  生:三角形的内角和是180 度。(师板书)

  师:把你们伟大的发现读一读吧!

  (三)拓展应用,深化认识

  师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

  师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

  (生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

  师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

  师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

  师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

  师:好,请看大屏幕!

  (出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

  生答后,师提问:你是怎样想的?

  生陈述后,师鼓励:说的真好!

  出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

  (出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

  师:看来啊,三角形的知识在我们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

  (预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

  师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

  师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

  师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

  师:好,下课!同学们再见!

  《三角形内角和》数学教案 15

  【教学目标】

  1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

  2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

  3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

  【教学重、难点】

  教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。

  【教学过程】

  一、创设情景,提出问题

  小游戏:猜一猜藏在信封后面的是什么三角形。(出示)

  师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

  【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】

  二、动手实践、自主探究

  师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

  1.从特殊入手——计算直角三角板的内角和。

  (1)师生拿出30度直角三角板

  师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

  (2)再拿出45度直角三角板。

  师:这是什么三角形?这个角是多少度?它的内角和是多少度?

  (3)师:通过刚才的计算,你有什么发现?

  生:这两个三角形内角和都是180°。

  【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】

  2、由特殊到一般——猜想验证,发现规律。

  (1)提出猜想

  师:其他所有三角形的内角和是否也是180°?

  生:是、 不是……

  师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。

  (出示小组调查表。)

  (2)验证猜想(生测量计算,师巡视指导,收集回报的`素材)

  师:哪个小组愿意将您们组的发现与大家分享一下?

  生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

  师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

  【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】

  (3)揭示规律

  师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。

  注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

  师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

  (4)方法提升。

  师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

  【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】

  3、剪拼法再次验证——转化思想的运用。

  师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

  生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)

  班内交流,汇报撕拼法、折叠法。

  师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

  【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】

  4.展示——再次强化。

  师:现在大家知道这几个三角形的内角和是多少度吗?

  师:我们可以请电脑来给我们验证一下。

  (引入白板,通过拖动演示三角形从小到大度数的不断变化)

  结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

  【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】

  三、巩固应用,内化提高

  1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

  2.练习

  (1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。

  (2). 求出下列三角形中各个角的度数。(书88页第9题)

  (3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

  【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】

  四、课后思考、拓展延伸

  同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

  《三角形内角和》数学教案 16

  教学要求

  1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

  2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  3.培养学生动手动脑及分析推理能力。

  教学重点

  三角形的内角和是180°的规律。

  教学难点

  使学生理解三角形的内角和是180°这一规律。

  教学用具

  每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

  教学过程:

  一、复习准备

  1.三角形按角的不同可以分成哪几类?

  2.一个平角是多少度?1个平角等于几个直角?

  3.如图,已知∠1=35°,∠2=75°,求∠3的度数。

  二、教学新课

  1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

  2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

  3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

  4.指名学生汇报各组度量和计算的结果。你有什么发现?

  5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

  6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

  提示学生,可以把三个内角拼成一个角,就只需测量一次了。

  7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

  8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

  9.拿一个锐角三角形纸片试试看,折的'方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

  10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。

  12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

  13.出示教材85页做一做。让学生试做。

  14.指名汇报怎样列式计算的。两种方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°(140°+25°)=15°

  三、巩固练习

  1.88页第9题

  这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。

  直角三角形中的一个锐角还可以怎样算?

  2、88页第10题

  ①等腰三角形有什么特点?(两底角相等)

  ②列式计算 180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88页第10题

  ①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

  ②一个三角形的内角和是180°,两个三角形呢?

  四、布置作业

  《三角形内角和》数学教案 17

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  教学难点:

  对不同探究方法的指导和学生对规律的灵活应用。

  教学准备:

  多媒体课件、学具。

  教学过程

  一、创设情境,激趣引入。

  认识三角形内角

  1、提问:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  2、请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。三个内角的度数和就是三角形的内角和。

  (设计意图:让学生整体感知三角形内角和的知识,有效地避免了新知识的横空出现。)

  二、动手操作,探究新知。

  1、猜想

  先后出示两个直角三角形,让学生说出各个内角的度数,并求出这两个直角三角形的内角和。

  提问:从刚才的计算结果中,你想说些什么呢?

  (引出猜想:三角形的内角和是180°)

  (设计意图:引导学生提出合理猜测:三角形的内角和是180°。)

  2、验证

  这只是我们的猜想,事实上是不是这样的呢?还需要我们进行验证。想想,你有什么办法验证三角形的内角和是不是180°呢?

  (引导学生说出量一量、拼一拼、画一画等方法)

  提问:现实中的三角形有千千万万,是不是我们都要对其进行一一验证呢?

  引导学生回答出只要在锐角三角形、钝角三角形和直角三角形三种三角形分别进行验证就行。

  组织学生以小组为单位进行动手操作验证。(每个小组都有三种三角形,让学生选择一种三角形,用自己喜欢的方法进行验证,把验证的过程和结果在小组里进行讨论交流。最后,小组派代表进行汇报)

  (设计意图:让学生带着问题动手、动口、动脑,调动多种感官参与数学学习活动,通过操作、剪拼、验证,让学生去探索、去实验、去发现,从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。)

  3、总结

  通过验证,你们得出了什么结论呢?(板书:结论:三角形的内角和是180°)

  三、应用延伸,解决问题。

  1、求三角形中一个未知角的'度数。

  (1)在三角形中,已知∠1=70°,∠2=50°,求∠3。

  (2)在三角形中,已知∠1=78°,∠2=44°,求∠3。

  (3)选算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°

  (分别请同学们板演,并说出解题思路。)

  2、判断

  (1) 一个三角形的三个内角度数是:80° 、75° 、 24° 。 ( )

  (2)三角形越大,它的内角和就越大。 ( )

  (3)一个三角形至少有两个角是锐角。 ( )

  (4)钝角三角形的两个锐角和大于90°。 ( )

  (请同学回答,并说出判断的依据)

  3、解决生活实际问题。

  爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角呢?

  (让学生结合题意画图,再说出答题的思路)

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?

  图 形

  名 称 三角形 四边形 五边形 六边形

  有几个三角形

  内角和

  (设计意图:习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。)

  四、全课总结,梳理反思。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

  (设计意图:引导学生回顾与反思学习过程,进一步梳理知识,优化认知,感悟学习方法,从学会走向会学,带着收获的喜悦结束本节课的学习。)

  五、板书设计:

  三角形的内角和

  猜想:三角形的内角和是180°。

  验证:量一量、拼一拼、画一画

  直角三角形

  锐角三角形

  钝角三角形

  结论:三角形的内角和是180°。

  《三角形内角和》数学教案 18

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的`图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

  《三角形内角和》数学教案 19

  【教学目标】

  1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证"三角形的内角和为180度"的规律。

  【教学难点】

  理解并掌握三角形的内角和是180度。

  【教具准备】

  PPT课件、三角尺、各类三角形、长方形、正方形。

  【学生准备】

  各类三角形、长方形、正方形、量角器、剪刀等。

  【教学过程】

  口算训练(出示口算题)

  训练学生口算的速度与正确率。

  一、谜语导入

  (出示谜语)

  请画出你猜到的图形。谁来公布谜底?

  同桌互相看一看,你们画出的三角形一样吗?

  谁来说说,你画出的是什么三角形?(学生汇报)

  (1)锐角三角形,(锐角三角形中有几个锐角?)

  (2)直角三角形,(直角三角形中可以有两个直角吗?)

  (3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

  看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

  看到这个课题,你有什么疑问吗?

  (1)什么是内角?有没有同学知道?

  内:里面,三角形里面的角。

  三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.

  (2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

  (3)大胆猜测一下,三角形的内角和是多少度呢?

  【设计意图】

  创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

  二、探究新知

  有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

  1、确定研究范围

  先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

  只研究你画出的那一个三角形,行吗?

  那就随便画,挨个研究吧?(太麻烦了)

  怎么办?请你想个办法吧。

  分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

  2、探究三角形的内角和

  思考一下:你准备用什么方法探究三角形的内角和呢?

  小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

  小组汇报:

  (1)量一量:把三角形三个内角的度数相加。

  直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

  (2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

  能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

  (3)折一折:把三角形的三个角折下来,拼成了一个平角。

  这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

  总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

  3、演绎推理的方法。

  正方形四个角都是直角,正方形内角和是多少度?

  你能借助正方形创造出三角形吗?(对角折)

  把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

  再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

  这种方法避免了在剪拼过程中操作出现的误差,

  举例验证,你发现了什么?

  通过验证,知道了直角三角形的内角和是180度。

  你能把锐角三角形变成直角三角形吗?

  把锐角三角形沿高对折,分成了两个直角三角形。

  一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

  通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

  通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

  钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

  通过验证,你又发现了什么?(钝角三角形内角和180°)

  4、总结

  通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

  5、想一想,下面三角形的内角和是多少度?(小--大)

  你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

  【设计意图】

  为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

  三、自主练习

  1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

  2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

  3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的.度数吗?挑战第三关。(一道题)

  师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

  4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

  【设计意图】

  练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

  四、课堂总结

  同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

  真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

  课后反思

  《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".

  本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".

  为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

  教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

  1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

  2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

  3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

  教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

【《三角形内角和》数学教案】相关文章:

《三角形内角和》数学教案(精选15篇)02-20

《三角形的内角和》数学教案(通用15篇)05-16

三角形内角和教案02-19

《三角形的内角和》教案03-01

《三角形内角和》教学反思04-05

《三角形的内角和》教学反思07-06

(集合)三角形内角和教案02-02

《三角形的内角和》教案优秀12-23

《三角形的内角和》教学反思04-02