数学学习计划

时间:2023-05-17 15:48:04 学习计划 我要投稿

关于数学学习计划范文集锦六篇

  时间过得可真快,从来都不等人,我们的工作又进入新的阶段,为了今后更好的工作发展,做好计划可是让你提高工作效率的方法喔!我们该怎么拟定计划呢?以下是小编为大家收集的数学学习计划6篇,希望对大家有所帮助。

关于数学学习计划范文集锦六篇

数学学习计划 篇1

  关键是提高听课的效率

  1、课前预习能提高听课的针对性

  预习中发现的难点是本次讲座的重点;为了减少听讲座的困难,我们可以弥补在预习中没有掌握好的旧知识。

  它有助于提高思维能力。预习之后,你可以比较和分析你所理解的与老师的解释,以提高你的思维水平。预习还可以培养自己的自学能力。第二是专心听讲。

  2、特别注意讲课的开头和结尾

  在讲座开始时,一般是总结上节课的要点,指出这节课要教的内容,这是一个连接新旧知识的纽带。最后,它往往是对课堂所学知识的总结,具有高度的概括性,是在理解的基础上掌握这一部分知识的方法的提纲。

  此外,老师经常在课堂上对一些重点和难点做一些语言、语调,甚至一些动作。

  抓好基础

  数学练习只不过是数学概念和数学思想的结合应用。明确数学的基本概念、定理和方法,是判断问题类型和知识范围的前提,是正确掌握解题方法的基础。

  只有概念清楚,方法全面,遇到问题时,能快速得到解决问题的方法,或者面对新的练习时,能想到我们平时做的练习方法,才能快速解决。

  弄清基本定理是正确的,快速解决习题的前提条件,非凡是在复习什么章节的立体中,对基本定理熟悉而灵活掌握就能使习题解清楚,逻辑推理严密。反之,能使解题速度慢、逻辑混乱、叙述不清楚。

  制定好计划

  复习数学,想好的'计划,不仅有大计划这一项,还一个小程序,以每月、每周、每日计划匹配老师的复习计划,而不是彼此冲突,如根据老师的复习计划,今天复习的知识分,今天内应该掌握的知识,加深对知识的理解,测试不同方面和不同角度研究知识。

  在每天的复习计划中,我们应该留出一些时间去看课本和笔记,复习过去的知识点,思考老师那天说了什么,总结当天所学的知识。

  可以说,日常锻炼可以少做一些,但这些归纳、反思、复习是必不可少的。我希望你在制定计划时谨慎些。

数学学习计划 篇2

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  一、基本概念:

  1、 数列的定义及表示方法:

  2、 数列的项与项数:

  3、 有穷数列与无穷数列:

  4、 递增(减)、摆动、循环数列:

  5、 数列的通项公式an:

  6、 数列的前n项和公式Sn:

  7、 等差数列、公差d、等差数列的结构:

  8、 等比数列、公比q、等比数列的结构:

  二、基本公式:

  9、一般数列的通项an与前n项和Sn的`关系:an=

  10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn= Sn= Sn=

  当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

  (其中a1为首项、ak为已知的第k项,an0)

  13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q1时,Sn= Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的数列

  、 、 仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则 (c0)是等比数列。

  25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

  四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的最大、最小项的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函数f(n)的增减性

  31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

  (1)当 0时,满足 的项数m使得 取最大值.

  (2)当 0时,满足 的项数m使得 取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

数学学习计划 篇3

  新一学期又到了,上学期虽然没什么好成绩,数学93,语文94.5,但也评到一个三好学生,我没什么优点,只有老实,诚实。

  然而缺点一大堆,如:不爱看书,不认真听讲,胆小怕事,爱睡觉……,就是因为这些,我才会成绩下降。我非常害怕我会被父母责骂,被朋友无视我的.存在。

  所以我一定要在六年级阶段拼搏,我会努力地请父母支持我!我的计划如下:

  1、老师上课认真听。

  2、课堂作业按时按刻去完成。

  3、家庭作业要认真,不忘记。

  4、不懂问题下课问。

  5、计算题要认真仔细。

  6、作业字迹要工整。

  7、数学书要先预习,上课听的更懂。

  8、数学争取好成绩。

  9、配合老师要机急。

  10、作业不会勤思考,实在不行问老师。

  做到以上这十点,成绩优先一定行!

  我一定努力学习,新学期加油!

数学学习计划 篇4

  第一学期即将结束,按教学计划开展教学活动已进入复习阶段,为了 把本学期所学的知识进一步系统化,使学生对所学的概念、计算法则、规律性知识得到进一步巩固,计算能力和解决实际问题的能力等得到进一步地提高,全面达到本学期的教学目 标,努力提升班级本学科的优生率和及格率,特制定本复习计划。

  一、复习内容:

  1、圆;

  2、百分数的应用;

  3、图形的变化; ;

  4、比的认识;

  5、统计;

  二、复习目标:

  (一)、圆复习要求:

  1、使学生认识圆,掌握其特征;理解直径与半径间的相互关系;理解圆周率的意义,掌握其近似值。

  2、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

  3、使学生认识轴对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

  重点;圆的特征、周长和面积计算公式。

  难点:圆面积计算公式的推导。

  (二)百分数复习要求:

  1、使学生理解百分数的意义,知道它在实际中的'运用。

  2、使学生在理解题意,分析数量关系的基础上,能正确地解答百分数应用题。

  3、理解纳税、利息的意义,知道它们在实际生产生活中的简单应用,会进行这方面的计算。

  重点:理解百分数的意义,能熟练地进行小数、分数和百分数的互化,能正确地解答百分数 应用题。

  难点:解答百分数应用题。

  (三)比的复习要求:

  能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

  三、复习措施:

  1、全面系统地对整册教材的知识体系进行梳理,查漏补缺。

  2、坚持以人为本的教学理念,确保学生的主体地位,通过组织讨论、合作学习等多形式的组织复习活动,让学生参与复习的全过程,巩固已学过的学习方法,不断提高自学能力,培 养探索精神。

  3、加强知识的纵横联系,以学生为主体,引导学生主动地进行复习和整理,重视在学生理解基本概念、法则、性质的基础上注意加强知识间的联系,使学生获得的概念、法则、性质 系统化。对于易混淆的内容要加强比较, (如求比值与化简比)使学生明确它们之间的联系和区别。

  4、强化计算的基本训练,常见数量关系的积累和运用,使学生牢固掌握计算的基本方法,不断提高学生的计算能力。

  5、强化能力培养。在复习数学基础知识的同时,注意学生各种能力的培养。如,复习四则运算,在学生理解运算法则的基础上,经常性地进行训练,不断提高计算的正确率,培养学 生合理、灵活运用计算方法的能力。又如,复习圆的周长和面积时,通过各种直观手段发展学生的空间观念,培养测量和画图的技能。

  6、加强反馈,注意因村施教。复习时要注意抓重点,有针对性,加强反馈,及时根据学生的学习情况调节教学过程,使各种程度的学生得到有效发展。

  7、适当补充设计练习题,强化训练,进一步发展他们思维的灵活性,提高综合应用知识解决实际问题的能力。

  8、 做好复习转差工作, 尤其要对学习困难的学生进行重点辅导。并成立互帮小组。 结对子, 一帮一。在教师和学生的共同帮助下,使后进学生争取在期末达到合格。

  9、以说代做,以听代练,以练代讲,有重点、有系统的进行有效复习检查。

  10、重视测试。通过单元测试和综合测试卷,让学生对本册教材的学习内容达到融会贯通。测试评卷时,注重激发学生竞争意识,以口头表扬和发奖状(优秀奖和进步奖) ,调动学生 的学习积极性。

数学学习计划 篇5

  一、指导思想

  为全面贯彻学校、教导处的工作意见,认真学习先进的教育思想,积极投身课程改革,坚定不移地实施以培养学生的创新意识、探索意识和实践能力为重点的素质教育,深入有效地开展教研活动,全面提高数学教学质量。紧紧抓住“发展、提高、统筹、服务”四大要素,根据我校教育工作要求与目标,积极开拓教育教学创新,深化教育改革,优化教育结构,提高教育质量,全面实施素质教育,推动我校数学教学工作上新台阶。

  二、主要工作目标

  1、提高教学质量为中心,全面提高学校数学教育的总体水平。

  2、加强教科研意识,有目的地、有计划地开展教研活动。

  3、教科研一体化,积极推进课程改革,加强课堂教学研究,进一步深入开展综合实践活动和课程整合的探索,努力提高课堂教学效益,全面提高学生的综合的素质。

  4、加强师资队伍建设,使青年教师崭露头角。

  三、工作要点

  1、提高教师素质,采取“传帮带”的.方法,加速对青年教师的素质培养,不断转变教育思想和教育观念。组织教师集体备课,十年内新教师上好教学汇报课。

  2、定期举行教研组活动,不断提高教师的业务素质。使每位数学教师逐步建立各自具有特色的教学模式和教学方法。

  4、规范教学行为。布置的作业,要符合学生的生理心理特点;符合学生的实际水平;符合学生的兴趣;符合培养学生的全面素质要求,特别是培养学生的创新精神和实践能力。

  5、开展《新课程标准》的学习,把握其精神,按照课程标准实施教学,并不断接受新的教学理念、教育方法、教育手段。大力开展并规范教研组建设,认真进行教材研究,落实备课、上课、批改作业等各环节。

  6、贯彻《教育管理规程》及教育部颁发的有关文件精神,规范办学行为,切实减轻学生负担,认真落实五认真、教学常规,向课堂40分钟要质量,认真备课,逐步提倡书面化备课,继续加强教学反思这一环节。

  7、加强对各班教学质量监控,积极改革和完善考试制度,期中期末对各班的教学情况进行抽测,实行教改分离制度,并认真分析记录,努力提高数学整体水平。

数学学习计划 篇6

  ——良好的开始是成功的一半

  有一种普遍现象:许多初中数学学习成绩的佼佼者,进入高中后,不能适应高中的数学学习,成绩下降,笔者认为产生这一现象有两个方面的原因:一方面学生升入高中后(一般都是各县市或乡镇中学升入重点高中),发现周围都是优秀的学生,回想自己曾经是老师心中的优秀生,是同学眼中的榜样,但经过数次考试后发现优势不再,而且在其它的综合素质方面也不能崭露头角,心理出现了巨大的落差,进而消极,如果不及时调整自己的心态,容易产生自暴自弃的想法和行为,严重者还会产生精神方面的疾病,此种例子比比皆是。另一方面教学内容的加深,思维要求的提高,课堂知识容量的增加,教师讲解习题的时间减少,学生不能适应这种变化,此外初中的学习方法已不能适应高中的数学学习,教师也不再像初中那样紧盯着学生学习,更多的在于自学,针对这种现象,笔者认为有必要向高一新生讲一下如何应对高中数学学习的经验和建议。

  一 、初中与高中数学的差异

  高中数学与初中数学一个明显的差异是知识内容“量”的急剧增加,单位时间内接受知识信息的量与初中相比增加了许多,消化和练习的时间相应的减少了,另外,初中数学是以形象、通俗的语言方式进行表达,而广州数学则触及的是抽象的数学语言以及抽象的思维形式,各种抽象的概念性语言对思维能力提出更高的要求,此外高中数学更加强调分析过程、思想方法的贯穿及运用、思维形式的训练及能力素质的培养。

  二 、学生存在的不良学习习惯

  ⑴思想上的松懈

  有些同学把初中的那一套学习思想移植到高中来,简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!

  ⑵靠记忆学习数学

  初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。

  ⑶依赖教师,忽视自学习惯

  许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。

  ⑷在头脑中没有形成数学知识体系,只注重孤立的知识点

  高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。

  ⑸只注重结论与记忆,不注重知识的形成过程

  高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。

  ⑹没有形成自我反思、自我总结的习惯

  学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。

  三、掌握科学的数学学习方法是学好数学的关键

  高中生仅仅想学时不够的,必须掌握科学的学习方法,才能提高学习效率,才能做学习的主人。但学无定法,每个学生都有自身的优缺点,学生应根据自己的特点及学习情况,对各种学习方法比较和积累,最终形成自己的学习方法,以下是一些共性的学习方法作简单介绍。

  (一)养成课前预习的习惯

  ⒈预习的意义

  预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。

  2.预习的基本步骤

  边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。

  边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。

  边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。

  (二)专心听讲,积极提出自己的问题,认真做好笔记

  “学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。

  新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。

  (三)认真完成作业,做好复习总结

  认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。

  及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。

  (四)关注错题

  有一种简单化的.认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.

  知识性错误

  主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.

  逻辑性错误

  逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.

  知识性错误与逻辑性错误既有联系又有区别.

  (1)知识性错误与逻辑性错误有联系.

  由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.

  (2)知识性错误与逻辑性错误又有区别.

  知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.

  策略性错误

  这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.

  例如:不等式x2+ax+1>0在x[1,2]上恒成立,求实数a的取值范围,大多数同学

  都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.

  心理性错误

  这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:

  (1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.

  (2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.

  (五)主动学习,善于对比和联想

  在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。

  学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。

  学习数学一定要在三个字上下功夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。

  对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。

【数学学习计划】相关文章:

学习数学的计划05-04

数学的学习计划03-22

数学学习计划03-19

初中数学的学习计划03-19

暑假数学的学习计划03-21

【热门】数学学习计划03-27

数学学习计划【精】03-27

【推荐】数学学习计划03-27

数学小学学习计划04-02

制定数学的学习计划03-21