人脸识别的方法有哪些

时间:2022-09-29 04:39:25 数码 我要投稿
  • 相关推荐

人脸识别的方法有哪些

  导语:人脸识别的方法有哪些?一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。

  人脸识别的方法有哪些

  (1)几何特征的人脸识别方法:

  几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

  (2)基于特征脸(PCA)的人脸识别方法:

  特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。

  (3)神经网络的人脸识别方法:

  神经网络的输入可以是降低分辨率的人脸图像、局部区域的`自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

  (4)弹性图匹配的人脸识别方法:

  弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

  (5)线段Hausdorff 距离(LHD) 的人脸识别方法:

  心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

  (6)支持向量机(SVM) 的人脸识别方法:

  支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。


【人脸识别的方法有哪些】相关文章:

男人脸部美白的方法有哪些04-18

男人脸部皮肤保养方法有哪些04-01

辨别鸭子性别的方法有哪些04-29

人脸识别算法有哪些分类04-01

有哪些判断宝宝性别的养生方法05-11

人脸识别系统有哪些难点04-01

人脸识别算法有哪些难点问题04-01

选购黑茶真伪辨别的方法有哪些04-02

看穿你肚子里宝宝的性别的方法有哪些05-25