《两位数乘两位数》教学反思

时间:2022-02-18 14:54:50 教学反思 我要投稿

《两位数乘两位数》教学反思(通用5篇)

  作为一名优秀的教师,我们要有很强的课堂教学能力,教学反思能很好的记录下我们的课堂经验,那么应当如何写教学反思呢?下面是小编整理的《两位数乘两位数》教学反思(通用5篇),欢迎阅读,希望大家能够喜欢。

《两位数乘两位数》教学反思(通用5篇)

  《两位数乘两位数》教学反思1

  两位数乘两位数笔算乘法是在学生能够较熟练的口算整十、整百数乘两位数,并且掌握了多位数乘一位数的笔算方法的基础上进行教学的。本课的重点是掌握两位数乘两位数的笔算算理。关键在于学生能掌握好乘的顺序以及两个积的数位。

  教学中,我从学校购新书入手,再现了学生熟悉的`情景,激发了学生的学习兴趣,同时,把计算设置在学生熟悉的具体情景之中,激活了学生原有的知识与经验,使学生愿意去主动探索知识。例:24×12,让学生以探究、活跃、高昂的精神状态参与学习过程。

  从课堂反馈来看,效果较好。在探索计算方法时,我让学生独立尝试计算,有的孩子用口算的方法,有的孩子用竖式的方法。其中不少用竖式的孩子是直接写出得数而没有计算过程的,说明这些孩子还没能很好的理解算理。此时,我请了几位孩子上台书写自己的方法,先请口算的孩子说了自己的想法,再请笔算正确的孩子说他的计算过程,同时,我注意引导学生进行观察表达,让学生们理解笔算的计算过程。最后在比较台上错误的笔算存在的问题,让学生加深对算理的理解,明白算理的重要性和必要性。两位数乘两位数的笔算对于学生而言是较难理解的,计算时需要进行3层计算。学生还未能熟练掌握时,往往会出现运算第2层时把算乘几十当成算乘几,或者将因数弄混淆导致出错。为了避免这一问题,在学生书写竖式时,我要求孩子们将算理一并书写在算式的旁边,便于孩子记住自己该算哪一步,便于孩子们在思维混淆时能理清运算的顺序,在检查时便于发现错误。

  在教学中我体会到,对这一知识的教学千万不能急,不能光看学生计算出的结果正确与否,而应关注学生是否理解了算理。看似简单的计算,实际对初次学习的孩子来说是挺困难的事情。在教学中应多观察多思考学生出错的原因帮助其从对症下药。同时,加强对算理的理解是学生熟练掌握计算方法的关键。

  《两位数乘两位数》教学反思2

  今天继续用钉钉直播讲授数学课,本节课我讲的三年级下册第四单元的《两位数乘两位数的笔算》一课,它是在学生学习了多位数乘一位数的基础上进行教学的,也是整数乘法学习的重要阶段,需要让孩子对整数乘法的算理和算法进行更深层次的认识。

  课上,我通过复习多位数乘一位数,让学生说说笔算方法,唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。接着从王老师买书的情境引出算式14×12,从而出示本节课的课题:两位数乘两位数。

  在探究两位数乘两位数的笔算方法时,我让学生通过点子图的形式,明确可以把其中第二个乘数分成(3×4)或(10+2),首先知道了计算结果是168;接着一起探究两位数乘两位数的笔算方法:我让学生先根据独立尝试解决列竖式计算,学生在尝试解题的过程中难免会出现错误;接着我一步一步出示正确的竖式书写方式,并通过点子图让学生明白每一步的意义时,特别强调14×2表示2套书的本数;14×10表示10套书的本数;28+140=168表示12套书的本数。同时明确了竖式书写要对齐数位,十位与第一个乘数相乘的积个位的“0”可以省略的道理。学生结合现实的情境,理解了两位数乘两位数的算理,使抽象的算理具体化,更便于理解和接受。

  接着我通过与多位数乘一位数的.竖式计算的对比,让学生发现相同之处和不同的地方,从而总结出两位数乘两位数(不进位)的笔算方法。在巩固拓展环节,我先从笔算方法的掌握先着手,让学生通过计算、展示做一做的题目,让大家明确竖式中的每一步得数是怎么来的,进一步理解算理,掌握计算方法。最后让学生去所学的知识去判断纠错,解决生活中的实际问题,把所学的知识应用于生活,提高学生解决问题的能力。

  整节课我把计算教学与解决实际问题相结合,使课堂内容充满了情趣,有了色彩,既解决了计算问题,又提高了解决实际问题的能力,一举两得。但本节课也有一些不足之处:由于网络授课的原因,学生的列竖式计算的情况没有全员关注,上课时间只有30分钟,导致解决问题的练习比较草率。

  《两位数乘两位数》教学反思3

  《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。

  教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。

  教学的难点是解决乘的顺序和第二部分积的书写位置问题。

  片段一

  师:文具店新购进一批圆珠笔,一盒是24支。请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?

  (学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等。)

  师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?

  (有几个学生在下面嘀咕,算算不就知道了。)

  师:(老师马上接过话头)这几位同学说的很好,算算就知道了。下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。

  (老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)

  师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。

  (在老师的鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)

  (学生经过15分钟的独立思考后,教师回到讲台。)

  师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?

  (准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)

  通过交流,全班一共发现了近十种解法:

  (1)24+24+……+24=288(12个24相加)

  (2)12+12+……+12=288(24个12相加)

  (3)24×2×6=288

  (4)12×3×8=288

  (5)24×3×4=288

  (6)24×10+24×2=288

  (7)竖式计算

  (8)24×20—24×8=288

  片段二

  师:同学们已经探索出十几种算法,下面我们比较一下这些方法的.优缺点。

  师生交流后,得出以下几种结论:

  1、用加法计算,容易理解,但计算麻烦,容易出错。

  2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)

  3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。

  二、归纳法则。

  在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。

  三、巩固练习。(略)

  [案例反思]

  如何搭建“脚手架”?

  所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。

  在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。

  我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。

  首先,搭建“脚手架”要引导学生自主提取信息。

  随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基。

  其次,搭建“脚手架”要蕴含数学思想方法。

  “如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。

  如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。

  《两位数乘两位数》教学反思4

  本节“两位数乘两位数进位”为计算法则教学课,我按照传统的模式:导入,新授,巩固练习,课堂小结,布置作业设计的。

  良好的导入能起到先声夺人的作用,教材为我们提供了下围棋这一情节,就是针对新课中的“围棋”我设置了“专心致志”的故事而过渡到新课。巧妙地将“棋盘上一共有多少个交叉点?”的问题融于故事情节之中,使单纯的数学教学变得情趣盎然。让学生知道数学来源于生活。但是复习的时间过长,导致后面的本节课的亮点部分生生互动环节“蜜蜂采蜜”没有实施。教学是一门遗憾的艺术,在新课练习过程中有部分同学做错。原因是两个数的和没有加反而也用乘法。针对错误指出错误让全班的同学引以为戒。避免这种错误再次发生。

  精心设计的一节课并没有上出我理想中的效果。在实施过程中遇到了这样那样的失误。分析如下:

  (1)导入过长。导入过长直接影响后面的'教学。

  (2)复习注重梯度练习。学生的接受能力不一样,练习多设置些有梯度性的题便于不同层次的学生消化。

  (3)时间分配上要调整。

  (4)尽量避免口误,注重教学中的每一个细节。

  虽然存在种种遗憾,但是我会一如既往的努力下去,争取上好每一堂课,少上遗憾的课。在遗憾中反思,在遗憾中完善,在遗憾中成长。让学生学到学好更多的知识!

  《两位数乘两位数》教学反思5

  二两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用旧知解决新知的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。

  对整堂课的教学设计是创设一个具体的情境激发学生学习的兴趣,围绕要解决的中心问题展开自主探索,在教学中教师心引领者的角色带领学生理清:

  1、掌握乘的顺序。

  2、理解用第二个因数十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。

  在实际教学时,估计有相当一部分学生能算出结果是多少,所以本课基本思路是从认知冲突到新知尝试经过交流理解达到巩固掌握,同时也提倡算法多样化。

  实际教学中,在组织全班讨论、交流各类方法,提出自己的疑问一起解决。在教学过程中学生出现多种计算方法,有用加的方法进行分拆,有拆因数法,有坚式计算。所以我主要是通过让学生在复习、尝试、交流的过程中,使学生能够将新知与原有的知识进行沟通与交流,从而达到学习的目的。

  在整堂课中,我尊重学生的认知基础,合理的运用学生生成的`问题资源,让学生在展示个性思维的时候,暴露自己真实的想法,通过学生间的相互交流、相互启发,相互的反思中的想法与口算方法的算理巧妙的合并到一起,根据自己原有的知识经验,把现在的想法在竖式中如何表示出来,在学生对新生事物的不断完善中,关注到了学生的错误,关注了学生的情感,对于+的省略,它是一个习惯问题;他们在相互交流、自我反思中不仅突破了建构了知识的障碍,让学生自己感悟错误所在,从而牢固建构建构了两位数乘两位数的笔算坚式格式,使我们的课堂教学高潮层出不断。有人说,创造不在于结果,而在于过程。课堂中的问题信息其价值并不在于问题本身,而在于背后的创造过程,实现了问题背后的创新价值,才真正使课堂中的问题变成重要的课程资源。

  新理念下的课堂教学是开放的,动态的,当学生活起来、动起来的时候,我们必须学会倾听他们之所想,组织他们交流思维的火花,在师生交往、生与生积极互动、共同发展的动态过程。学生带着自己的知识、经验、思考,参与课堂教学。正是有了他们的参与,才使我们的课堂异彩纷呈,充满了未知的、不确定的因素。因此在课堂教学中应该突破预设的囚笼,变预设为生成,善于捕捉动态生成性资源,使之加以利用,让课堂教学涌动活力。当然捕捉这种闪烁不定的教学资源,教师要有妙手,能及时抓取,促成课堂教学的动态生成,而富有动态生成的课堂正是我们课堂教学改革要努力达到的境界。同时教师的教学必须是在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维,达到教人以渔的目的。

【《两位数乘两位数》教学反思】相关文章:

两位数乘两位数教学反思04-15

关于《两位数乘两位数》教学反思04-13

两位数乘两位数教案08-27

两位数加两位数教学反思03-25

三年级下册《两位数乘两位数》教学反思范文04-13

两位数乘两位数教案(通用20篇)03-02

《三位数乘两位数》教学反思05-22

《两位数乘一位数》教学反思12-08

三位数乘两位数教学反思08-10

《两位数减两位数退位减法》教学反思11-24