圆的面积教学反思
作为一位到岗不久的教师,课堂教学是重要的工作之一,借助教学反思可以快速提升我们的教学能力,那么你有了解过教学反思吗?下面是小编整理的圆的面积教学反思,欢迎阅读与收藏。
圆的面积教学反思 篇1
《圆的面积》中的圆是小学阶段最后认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的能力。
课刚开始,我与学生们一起复习了前面学习的圆的周长公式,为下面计算圆的面积公式做好了铺垫。先让学生各自述说自己对于圆的面积的一些认识,再提出一个难题:“你能想办法求出圆的面积么?”面对这一问题,大部分学生一筹莫展。个别同学经过预习,对本课所采用的方法有了一定的了解,表达了利用剪一剪和拼一拼的方法进行研究的想法。在这时,提出“以前有没有这样剪一剪拼一拼的方法?”学生回忆起以前学平行四边形面积时也是沿平行四边形的高剪下一三角形,再通过平移补到缺口的方法将平行四边形转化为长方形。从中得出了转化是一种很巧妙的方法,可以在动手操作的.过程中用到。然后同学们小组合作,动手操作,孩子们通过操作后,发现将圆等份后可以将圆转化成一个近似的平行四边形。如果将圆等分的等份越多,那转化的图形就越平行四边形。可以根据长方形或平行四边形的面积计算公式推导出圆的面积计算公式。根据学生的回答,利用课件的演示,直观的向他们展示了转化过程以及利用极限的方法变成
长方形后其长、宽与圆的周长、半径之间的关系。最后在学生们大胆猜测,积极求证之下推导出了圆的面积计算公式。通过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。
为了本节课的教学,自己经过了较长时间的精心准备,因此,从整个教学设计来看还做得较为可行,重点把握的比较准确。但是在具体实施教学时还是存在着几点不足:
1、课堂语言评价存在着较大的不足。平时比较不怎么注意这方面的培养,导致课堂气氛没有很好的被调动起来。因此,希望能通过平时课堂教学的磨练逐步改善这个缺点。
2、圆的面积公式推导及实践操作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还不过深入。如果当时在引导上能及时考虑到这一点,并给予更具技巧性的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。
这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,希望能在今后的教学中取长补短,积累经验,取得更大的进步。
圆的面积教学反思 篇2
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
一、以旧引新,渗透“转化”思想
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也可以拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形可以让学生自己下课后推导。
再对比圆形和这个拼成的图形之间的.关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的形成
通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。
圆的面积教学反思 篇3
新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。
1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的'抽象思维能力。
3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。
1、注重情境创设,有意识地激发学生学习知识的兴趣
数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、注重实践操作,有意识地培养学生获取知识的能力
学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、注重学法指导,有意识地引导学生应用转化的方法
本节课中,在求圆面积公式时,不是教师灌输式地教会学生s =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”,并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、注重媒体应用,有意识地突破学生学习知识的难点
利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。
用多媒体课件,圆形卡片辅助教学
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1)转化后长方形的长相当于什么?宽相当于什么?
2)你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果。
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
总结
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
圆的面积教学反思 篇4
《圆的面积》这节课学生学习求曲线图形面积,也是求图形面积的一次重要转折。探究圆的面积计算公式,需要学生运用已有的学问阅历来实现“知到”的转化,最终推导出圆的面积计算公式。
在教学本课时,我重视学生活动阅历的积存。先引导学生回忆平行四边形的面积计算公式的推导过程,以实现学生对“知转化为”这一数学学习方法的'迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经受“转化”的过程,进一步促进了学生对这一方法阅历的内化。重视培育学生“数学化”的口头表达力气。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的觉察,让学生深刻感受到化曲为直中“无限接近”的极限思想。在觉察拼成的平行四边形的与圆的联系后,引导学生用“由于……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培育了学生思维的严密性和语言表述的准确性。
在教学过程中,我充分发挥多媒体课件的作用。在教学中,我通过课件演示,直观形象地再现了拼成的平行四边形与圆各局部之间的联系〔底相当于圆周长的一半,高相当于圆的半径〕,轻松化解了教学难点,让学生教简洁地推导出了圆的计算公式。
教学中的缺乏之处:
1、在引导学生“把圆转化成已学过的图形”进展面积争论时,缺乏有效的启发和缺乏必要的指导,如圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、我在引导学生觉察“拼成的图形和圆的联系”时,收的多,放的少,抑制了学生思维的主动性、独立性和制造性。
圆的面积教学反思 篇5
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
1、教学中我鼓励学生大胆猜测圆的面积
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。
2、体现学生的主体性:
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题,解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
3、渗透了学习评价:
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如?”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”?学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心。
4、不足之处:
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
1、运用转化思想,解决数学问题。在教学过程中,我首先借助估算了解圆的面积的意义,再让学生利用学具进行操作,自主发现圆的面积与拼成的平行四边形的面积的关系,推导出圆的面积计算公式,降低了学习的难度;同时在教学中将“化曲为直”(即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的`方法,激发学生的求知欲望)和转化的数学思想渗透到学生思维中,让学生注重知识的发现和探究的过程。
2、注重联系生活实际,开展探究性的数学活动。学生从认识直线图形发展到认识曲线图形是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已经具有了一定的逻辑思维能力,已经有了许多机会接触到数与计算、图形与几何等较为丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,因此在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识的发现和探究过程,让学生从中获得学习数学的积极情感体验和感受数学的价值。
3、练习设计有坡度,由浅入深地巩固新知。教师在指导课堂练习时,先是让学生解决马儿的困惑,也就是知道半径求圆的面积,然后是知道直径求圆的面积,在拓展提高中告诉圆的周长,解决与圆面积有关的问题。练习安排坡度适当、由易到难,使学生由浅入深地掌握了知识,形成了技能。同时还培养了学生的逻辑思维和推理能力。
4、重视图示的作用。结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
圆的面积教学反思 篇6
《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一.明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二.以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三.转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的`观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。
四.公式推导
平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
圆的面积教学反思 篇7
学以致用,数学学习更是如此,把所学的知识运用到实际生活中,是数学学习的最终目的。本节课中,我注重紧密联系学生的实际经验,创设了让学生观察生活环境中的情境,向学生展示了生活中的圆形,从中提出数学问题,并加以解决,从而顺利地引出新课,最后又让学生计算出最大面积。通过联系实际,计算面积,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。
但是,这节课还存在许多不足之处,需要在以后的教学中改进。
一、时间安排不恰当
如:复习设计方式不够合理,教师的演示过程加上学生的叙述占用了练习的宝贵时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、课堂评价需改进
在课堂评价方面还需加以改进。评价对培养学生的情感和态度有着十分重要的作用。师生共同全方位参与的课堂才会产生心理共鸣,充满激情,充满活力。因为学生很在乎别人,尤其是同伴对自己的肯定。本节课中我感觉在这方面稍微欠缺了一点点。
三、设计练习应有层次
练习时,我只设计了基础题和提高题。基础练习巩固计算公式的运用,强调规范的书写格式;提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。但是我觉得应再设计综合题,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的`综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点,这样更能提高学生的数学学习能力。
圆的面积教学反思 篇8
《圆的面积》是义务教育课程小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。而在之前的学习中,孩子们也经历了《圆的认识》和《圆的周长》的学习,掌握了圆的周长公式,为本课时的教学做好了铺垫。
根据这一课时的内容特点,我在第一次上设计课堂教学时,特意给学生安排了小组合作探讨和个人尝试推导解决问题的设计,让学生主动参与到学习中,促成学习与活动的相结合。基于对课程特点的认识,我在设计中把教学目标设计为:
1、理解圆的面积的含义;理解和掌握圆的面积公式。
2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
通过与学生的努力,快乐地结束了本课时的学习,在这个过程中,我有以下几点的体会:
一、学生为主体,老师要有好的引导。
在设计本课时的时候,考虑到知识的特点,主要培养学生通过原来的转化知识应用在新知识中,发展学生的概括能力,于是,我把课堂的主体交还给学生,让他们在课堂的一开始,就进入到数学的领域,通过给他们自主地猜想,形成问题,并趁机引导学生:如何解决这个问题呢?学生有了自己的猜想,于是,集中地精神更高。当在探索中遇到困难后,我及时给予集体的讨论并让他们在小组内互相帮助,最后达到共同解决的目的。可有一点让自己不太满意的地方,学生在操作中用了太多的时间。
不过,在整个过程中,我还是给了学生充分的时间和空间,也注意了自己的引导作用,学生在自己的动手操作中还是能体会其中的探索乐趣,学会了知识,发展了自己的能力。
二、课时练习设计的思考。
由于在课前有了充分的思考,所以在每一个环节中的练习都有了充分的准备,在导入——猜想——操作——推导——验证,再回到练习,让学生的认识从浅到深,从具体到抽象,符合他们的认识发展规律。针对这个规律,我把练习也设计成层层递进的形式,从巩固公式计算——拓展思考,逐步提升学生的知识能力,挑战学习的思考积极性,发展了学生观察、分析和应用的能力。可能个别学生在学习上有一定的困难,我没能及时地兼顾到,导致在课后有几名学生对课时练习还没有完全掌握的现象。另外,由于课前没有完全设想好练习时间的安排,导致后面的题目没能及时顺利地完成。
三、操作时间的`分配问题。
数学是思维的体操。当学生在思考、剪拼的过程中应多给学生一些时间,多一些思维的空间,这样的课才丰实。因在课件演示组拼的过程中动作太快,没及时说说剪拼的方法。导致学生在操作时出现了很多的问题,费时间较多,这样也致使练习的时间就更少了。
对于本课时来说,学生的操作时本课时主要采用的教学手段,学生在这个过程中都能全程参与进去,但时间分配上下尽合理,给教学带来一定的影响。
经过实践教学后,让我明白了数学课堂有时并不需要由老师一手包办,有些时候,可以选择适当的时机,把学习的主导权交还给学生,让他们主动参与进课堂,享受探索学习的快乐。
圆的面积教学反思 篇9
圆的面积是人教版六年级数学教学的重要内容,在学习圆的周长时,学生已经有了“化曲为直”的初步思想与体验。虽然学生对极限思想理解不够具体。但不管曲线化直线是否够直,其实并不影响近似长方形的长与圆周长的关系。理解了这点,学生通过“剪拼议”在老师引导和学生引导下,能够接受长方形长等于圆周长一半,宽等于圆的半径,长方形面积等于长乘宽,所以,圆的面积等于π乘半径的平方。
虽然解决了教学重难点,完成了教学目标。但从一个例题,学生仅仅了解了转化思想。但远远达不到对转化思想的理解运用。如何利用好课本知识,学习致用。在备课时,我刻意增加了把圆拼成近似三角形,近似梯形,课堂上,在把圆拼成近似长方形,推导出圆面积公式,完成教学任务后,我提出既然可以运用转化思想,化曲为直。把没学过的知识点转化成学过的知识点,利用已有知识解决。那么我们能不能转化成其他已学过的图形呢?学生气氛活跃,经过拼图,很快拼成了近似三角形,近似梯形。但剪拼以后,应该怎么办?学生普遍陷入困惑,没有思路。这时,我注意开始启发学生。我们转化图形以后,怎样建立新旧图形之间的联系,需要从基本条件开始,那么,需要怎么找新旧图形之间的联系,从哪些条件着手。学生受到启发,很快从底,高,与三角形的'联系推导出了圆面积公式。不仅如此,学生还趁热打铁,从长度,长,宽,高,周长,到面积推导出了各个量之间的联系。学生兴奋地说,知道了以后转化图形以后,怎么找条件之间的联系了,也知道找的顺序,从长度到面积,从面积到体积。新旧图形之间的联系应该是方方面面的,
一节课,用心探究,用心准备,不但能解决知识目标,更能拓展学生能力。从鱼到渔,条条大路通罗马,全面提高学生数学素养与探究能力。
圆的面积教学反思 篇10
一、创设情境,导入新课。
课件演示:1、让学生想一想自动喷水装置喷水范围应该有多大呢?是什么形状?
2、现在你想提什么数学问题?
揭示课题:圆的面积
二、师生互动,推导公式。
1、认识圆的面积
a、什么是圆的面积呢?
b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?
c、圆的大小主要与哪些因素有关?(半径、直径、周长)
出示结语:圆所占平面的大小叫做圆的面积
2、回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)
三、生生互动,推导公式
圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!
1、小组讨论:设计方案,并汇报。
a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?
b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?
那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)
c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)
d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?
发现:平均分的份数越多,拼成的图形越接近长方形。
e、转化成长方形,推导圆的面积公式。
动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。
展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?
(3)长方形的面积相当于圆的()?(4)因为长方形的面积=()所以圆的面积=()。
2、小组讨论后,并演示公式推导的全过程。
3、揭示字母公式()。
小结:可见要求圆的面积只要知道什么就行?(半径)
四、练习巩固
1、运用公式学习例1。
学生试做,说理由,归纳总结。
2、完成基本练习(做一做)
五、解决问题
解决课件问题。
六、课堂总结
1、这节课我们发现了什么、学会了什么?
2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。
七、课外作业
练习十六的1~3题
《圆的面积》教学反思
本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基础。
圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。让学生知道新的`问题可以转化成旧的知识,并利用旧的知识解决新的问题。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。然后让生生互动,再根据自己的发现,小组合作,动手探究把圆转化成学过的平面图形。并通过这个环节来加深对新知识的巩固。在这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图
圆的面积教学反思 篇11
教材分析
圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。
学情分析
学生对圆的特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的`问题。基于以上的思考,特制定以下教学目标:
教学目标
1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。
2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点和难点
教学重点:运用公式正确计算圆的面积。
教学难点:圆面积计算公式的推导过程。
圆的面积教学反思 篇12
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的'思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
通过观察操作,推导出圆面积公式及其应用。
极限思想的渗透与圆面积公式的推导过程。
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:a、剪--怎样剪?剪成几份?b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
通过本节课的学习你有哪些收获?
【圆的面积教学反思】相关文章:
圆的面积教学反思06-21
《圆的面积》教学反思11-14
《圆的面积》教学反思优秀01-31
圆的面积教学反思优秀02-02
《圆的面积二》教学反思08-31
《圆的面积》教学反思(精选11篇)11-11
圆的认识教学反思 圆的周长教学反思12-27
圆的面积教案09-21
圆的面积教案11-13