- 相关推荐
《3的倍数》优秀教学反思(精选11篇)
在充满活力,日益开放的今天,教学是重要的任务之一,反思指回头、反过来思考的意思。反思我们应该怎么写呢?以下是小编精心整理的《3的倍数》优秀教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
《3的倍数》优秀教学反思 1
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发...
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2 的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的`概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。纵观这节课,学生学得还是比较轻松,掌握的较好。
《3的倍数》优秀教学反思 2
2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2.5的倍数的特征不难理解,对偶数和奇数的.概念也容易掌握,但我由于对教材的把握不够,时间用到2.5倍数上的较多。以至于对3的倍数特征探究不到位。
好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学习过程中应该售察、发现、验证、结论等探索性与挑战性活动。首先让学生圈出写出100以内2.5的倍数,立观察,看看你有什么发现?学生很容易发现他们的特征,而这只是猜测,结论还需要进一步的验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2.5倍数与其他数位的关系,着就不是本节课的重点。
小组合作,发挥团体的作用,动手实践、合作交流是学生学习数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。
《3的倍数》优秀教学反思 3
《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
1、瞄准目标,把握关键
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的让学生发现却不是这样,于是新旧知识间的矛盾使学生产生了困惑,有了新旧知识的矛盾,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知噬入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、经历过程,授之以渔
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
3、追求本真,知其所以然
本节课的目标定位上,我考虑到学生的'已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
《3的倍数》优秀教学反思 4
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2.5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的'倍数的特征》的开始,我先复习了2.5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2.5、3的倍数的特征来判断一个数是不是2.5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。
这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。
《3的倍数》优秀教学反思 5
兴趣是一种带有情感色彩的认识倾向。它以认识和探索某种事物的需要为基础,是推动人去认识事物,探求真理的一种重要动机,是学生学习中最活跃的因素。有了学习兴趣,学生在学习中产生很大的积极性,从而产生某种肯定的、积极的情感体验。下面,就在小学数学教学中如何结合学生的年龄及思维特点,培养学生的学习兴趣,谈几点体会。
一、创设探索性情境,激发学习兴趣
现代教育理论曾提出过“三主”的观点:即课堂教学应以学生的发展为主线,以学生探索性的学为主体,以教师创造性的教为主导。所以,在课堂教学中,教师应创设一个探索性的学习情境,引导学生从多种角度,各个侧面不同方向去思考问题,以激发学生的学习兴趣,变“要我学”为“我要学”。
例如,在教学“平行四边形面积的计算”时,平行四边形面积的计算公式是教学重点,而平行四边形面积计算公式的推导又是教学的难点。如何突破难点,我们在课堂教学中做了这样的设计。我先出示长方形框架并告诉学生长方形长3分米,宽2分米,请学生说出它的面积,然后教师捏住长方形框架的一组对角向外拉,长方形变成了平行四边形。这时我提问:同学们能说出它的面积有没有变化吗?学生l回答:它的面积不变,还是6平方分米。学生2回答:它的面积变了,比5平方分米小。此刻,教师不必急于肯定或否定这两位学生的回答,给学生留一个悬念,这个平行四边形的面积到底是多少?怎样求得呢?根据小学生心理特点,他们一定会探索其中的缘由,而教师就应该给学生创设这种情境,放手让学生自己动手动脑去探索,自己得出结论。这样,学生求知欲望就被有力地激发出来,这种学习效果要比教师硬塞现成公式要好得多。
二、创设竞争性情境,引发学习兴趣
教育家夸美纽斯曾说“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。我们既然处在一个大的竞争环境中,不妨也在我们的小课堂中设置一个竞争的情境,教师在课堂上引入竞争机制,教学中做到“低起点,突重点,散难点,重过程,慢半拍,多鼓励。”为学生创造展示自我,表现自我的机会,促进所有学生比、学、赶、超。例如,在一次数学教研活动中,一位教师就根据教学内容并针对小学生心理特点设计了这样一种情境。讲授“8的认识”,在做课堂练习时,教师拿出两组0至8的数字卡片,指定一名男生和一名女生各代表男队,女队进行比赛。虽然此刻教师还没宣布比赛的规则和要求,可是全体同学已进入了教师所设置的情境之中,暗中为自己的队加油,全体学生的学习兴趣一下子被引发出来了。
三、创设游戏性情境,提高学习兴趣
根据数学学科特点和小学生好动、好新、好奇、好胜的思维特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红旗,多得为优胜。学生在游戏中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。
四、创设故事性情境,唤起学习兴趣
教学的艺术不在于传授本领而在于激励、唤醒和鼓舞“。我们认为这正是教学的'本质所在。我们在数学教学中适当地给学生营造一个故事情境,不仅可以吸引学生的注意力,并会使学生在不知不觉中获得知识。例如,在教学”比的应用“一节内容时,在练习当中我为同学们讲了一个故事:中秋节,江西巡抚派人向乾隆帝送来贡品芋头,共3筐,每筐都装大小均匀的芋头180个,乾隆帝很高兴,决定把其中的一筐赏赐给文武大臣和后宫主管,并要求按人均分配。机大臣和了马上讨好,忙出班跪倒”启奏陛下,臣认为此一筐芋头共180个,先分别赐予文武大臣90个,后宫主管90个,然后再自行分配“。还没等和说完宰相刘墉出班跪倒”启奏万岁,刚才和大人所说不妥。这在朝的文官武将现有56位,分90个芋头,每人不足两个,而后宫主管34人,分90个芋头,每人不足三个,这怎么能符合皇上的人均数一样多“。皇上听后点点头”刘爱卿说的有理,那依卿之见如何分好?“此时,学生都被故事内容所吸引,然后让学生替刘墉说出方法,这个故事把数学知识寓于故事情节之中,从而唤起学生学习兴趣。
五、创设操作性情境,调动学习兴趣
根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创造精神。
例如,在讲”轴对称图形“内容时,教师提前让学生准备长方形、正方形、圆、平行四边形和几种三角形的纸片。让学生试做每个图形的对折,使图形对折后能完全重合。学生通过操作后发现有些图形能完全重合有些图形不能完全重合。学生通过亲自动手操作,自己发现问题、解决问题,而且有力地调动了学生的学习兴趣。
通过多种形式的教学情境设计,不但使学生对学习数学产生乐趣,而且有助于培养学生勇于探索,大胆创新的精神。
《3的倍数》优秀教学反思 6
今天我教学了3的倍数的特征,我首先复习2.5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的`数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。
从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。
《3的倍数》优秀教学反思 7
《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的`困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。
上课过程中,大部分学生能按照我的思路去学习,使整个教学环节顺利进行下去。然而这节课结束后,我感觉以下方面做得尚有欠缺,现总结如下:
1、百数表使用不恰当。在推导3的倍数特征过程中,我将百数表的使用价值放在推翻同学们之前猜测的三的倍数是个位上的数是3、6或9,以及其他猜想上,其实百数表完全可以体现三的倍数的特征,我应该在今后的教学中多加思考,反复推敲,争取吃透教材,使学生们在学习新知识时候能够从最浅显的知识中入手,找到学习的方法,体会学习的乐趣;在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。
2、教具准备不充分。在课堂教学中可以给学生分发百数表,人手一张表,将做错的同学的表格通过投影仪展示给大家,让同学们去纠错,在纠正错误的过程中,加深对知识的记忆。
课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。
《3的倍数》优秀教学反思 8
在教学3的倍数的时候,先复习2的倍数和5的倍数的特征,然后出示1——100的数,让学生找出3的倍数,然后让学生观察这些数有什么特征。出现的情况有:
1.3的倍数跟个位有关;
2.这些3的倍数都相差3;
3.这些3的倍数排列时是斜着的,几乎没有人考虑到各个数位和。
看到这三个出现的情况,我有些发晕。分析可能有这样原因,一是学生受2和5的倍数的特征的影响,因为2和5的`倍数的特征都只考虑个位,所以3的倍数也就考虑个位了;二是学生受1——100这些数排列的影响,只看整体排列的规律和所在位置的特征或者这一列数的特征,没有考虑个体数的特征。
只有张靖晨说了12就看1+2=3,3是3的倍数,所以12就是3的倍数,她的回答就像救命稻草,我抓住她的话让同学去验证她说的是不是适合每个3的倍数,验证的结果证实了张靖晨的想法是对的。这是特征是在两位数范围内验证的那么三位数以外的数3的倍数是不是也有这样的特征,继续找几个数验证一下,结果适用于所有的数。这样3的倍数的特征就自然总结出来了。其实如果张靖晨不说这规律,我也是要提示学生往这方面想的。学生不会或者想不到的时候,老师适当的给与指导和提示,为学生的学习和研究指引一条正确的路是必须的。
《3的倍数》优秀教学反思 9
在学习3的倍数中,刚开始,通过复习2,5的倍数,孩子们都能对数快速做出判断,适时的给出3、4、5三个数拼出2的倍数和5的倍数的数,在给出让孩子们猜测3的倍数的特征?孩子们的定势思维是个位为3的倍数,在此基础上,让孩子们进行判断,出现认知冲突,迫使孩子们继续寻找新的途径去解决。在百数图上,由孩子们找出3的倍数的数,并观察3的倍数有什么特征。孩子们在汇报特征时,出现“我发现每个斜排个位上的数都减少一”“我还发现每个斜排十位上的数都减一”适时的`引导孩子们观察一个加一一个减一那么也就是说每个斜排的数的各位加起来都是相同的?这时孩子们还发现“第一个斜排加起来都是3”“ 第一个斜排加起来都是6” “第一个斜排加起来都是9”……这时候,离教学目标更为接近,让孩子们观察每个斜排这些3的倍数特征,得出都是3的倍数的猜测,并进行验证,得出3的倍数特征。再孩子们通过自己的观察发现3的倍数的特征后,让孩子们对于3的倍数特征有更深的认识。
孩子们可以发现我们老师在备课中忽略的知识,让孩子们充分发言,并从中提取有价值的信息,才能引导出孩子们对于他们来说更为直接的认知方式。
《3的倍数》优秀教学反思 10
本节课设计让学生先复习2,5的倍数特征,然后让学生先猜测一下3的倍数会有哪些特征,一部分学生很自然会猜测3的倍数也是看个位是否是3,6,9,这个时候就举出13这个反例推翻学生的猜测,让学生产生认知冲突,进而对3的倍数的学习有浓厚的学习积极性。之后让学生在百数表中圈出100以内3的所有倍数,最后让学生分小组讨论3的倍数特征。
在教学之前,我一直很忐忑学生能不能在讨论中发现3的倍数的特征。教学中按照预先设计的进行,当进行到小组讨论环节时,我走进小组听学生的交流,令我惊异的是,有一大部分小组能够发现3的倍数的特征。交流结束后,找学生来跟大家分享时,孩子们说的头头是道,比我预想的好的'多得多,我想孩子自己发现并且分享后达到的效果一定比我灌输给他们的效果好的多的多。
通过本节课的经历,我有一些感悟。在以后的教学中,很多内容可以放手让学生自己去探讨去研究,学生会给我意想不到的惊喜,相信学生。本节存在着很多不足:在组织学生小组活动时,没有在活动前明晰好规则,以至于活动的秩序不是很好,浪费了挺多的时间,最后的练习都没有进行完成,以后的备课要更加精细,把活动细则都写清楚。路漫漫其修远兮,吾将上下而求索。
《3的倍数》优秀教学反思 11
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
新的课程理念要求我们在教学中尽可能地为学生提供一个自主、合作、探究机会,其宗旨也就在于培养学生在实际的学习活动中,善于发现问题和提出问题的能力,灵活运用知识去解决问题的能力,在研究和解决问题的过程中学会合作。3的倍数的特征,有规律可循,容易上成机械刻板、枯燥无味的课,学生虽能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计采用了启发与发现相结合的教学方法,激励学生大胆猜想,动手实践,去发现规律,形成技能,升华至应用于生活。
本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。当然,培养学生的创造个性,仅仅停留在教学活动的情境上是不够的,教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。本课重点是要理解3的倍数特征,能够准确判断一个数是不是3的'倍数。我采用的是复习导入,先和学生们一起回忆了一下2.5的倍数特征,然后出示本课的教学目标。新授环节先让学生猜测一下3的倍数会有哪些特征呢?接着采用数形结合的方法,学生动手操作,在1~100的数字卡里找一找3的倍数,然后用自己喜欢的符号圈起来,然后观察小组讨论汇报。发现3的倍数特征不像2.5的倍数特征一样,看一个数的末尾了,引导学生是不是要看这个数其它的数位上的数呢?学生发现也不是很难。教材中有提示,学生回家预习后也会清楚叙述出3的倍数特征是一个数各个数位上数字相加的和。找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。
【《3的倍数》优秀教学反思】相关文章:
《3的倍数的特征》教学反思04-11
3的倍数特征教学反思12-07
3的倍数的特征教学反思02-11
《3的倍数特征》教学反思(精选24篇)12-13
倍数的特征教学反思04-21
公倍数的教学反思12-09
因数和倍数教学反思04-11
《倍数和因数》教学反思10-17
倍数和因数教学反思04-22