平面向量教学反思

时间:2023-02-09 08:25:59 教学反思 我要投稿
  • 相关推荐

平面向量教学反思

  作为一位刚到岗的人民教师,课堂教学是重要的工作之一,教学反思能很好的记录下我们的课堂经验,写教学反思需要注意哪些格式呢?下面是小编整理的平面向量教学反思,欢迎阅读与收藏。

平面向量教学反思

平面向量教学反思1

  简单回顾《平面向量的数量积》这节课,首先我通过力对物体所做的功的物理模型引入数量积这一概念的,之后剖析概念,通过小组讨论,让学生分析定义应注意的问题,特别强调数量积的结果不是一个向量,而是一个数量。通过练习,进一步熟悉巩固向量的数量积的定义,这个小题目的是提醒学生要注意,两个非零向量的夹角问题要通过平移使这两个向量共起点。接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识,而且为后面证明平面向量的数量积的分配律铺垫。数量积的运算律是数量积概念的延伸,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。为了让学生完成这个探究活动,我引导学生从平面向量的数量积的几何意义入手问题,师生共同完成证明过程。

  通过这节课的教学,我感觉不足的有:

  (1)教师应该如何准确的`提出问题在教学中,我提出问题,平面向量的数量积的定义中你认为应注意哪些问题?这个问题问的不够具体,学生不知道给如何回答。其实这个问题,我也曾考虑过该如何问,只是没有找到更合适的提问方法,能力有待加强。

  (2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。

  (3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质

平面向量教学反思2

  它是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景.其教育价值主要体现在有助于学生体会数学与实际生活的联系,感受数学在解决实际问题中的作用,有助于学生认识数学内容之间的内在联系,体验、领悟数学的创造性和普遍联系性,有助于学生发展智力,提高运算、推理能力。

  (1)应了解的内容:

  共线向量的概念,平面向量的基本定理,用平面向量的数量积处理有关长度、角度和垂直的问题。

  应理解的内容:向量的概念,两个向量共线的充要条件,平面向量坐标的概念。

  应掌握的内容:向量的几何表示,向量的加法与减法,实数与向量的积,平面向量的坐标运算,平面向量的数量积及几何意义,向量垂直的条件。

  (2)注意处理好新旧思维矛盾

  学习向量运算与学习数的运算有类似之处:从学习顺序上看,都是先定义运算,再研究运算性质;从学习内容来看,向量运算具有与数的运算类似的良好性质。当引入向量后,运算对象扩充了,不仅仅是数的.运算了,向量运算是建立在新的运算法则上,向量的运算与实数的运算不尽相同,向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用,它有一套自己的运算法则。但很多学生往往完全照搬数的运算法则,而不注意向量运算法则的特点,因此常常出错。

  在教学中要注意新旧知识之间的矛盾冲突,及时让学生加以辨别、总结,利于正确理解向量的实质。例如向量的加法与向量模的加法的区别,向量的数量积与实数积的区别,在坐标表示中两个向量共线与垂直的充要条件的区别等等。

  (3)注意数学思想方法的渗透

  在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法。例如,从帆船在大海中航行时的位移,渗透数学建模的思想。通过介绍相等向量及有关作图的训练,渗透平移变换的思想。

  由于向量具有两个明显特点“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题。

平面向量教学反思3

  本堂课属于概念课,作为数学的概念课是非常难讲的课题,一来你得让学生在第一时间能清晰的对概念的内涵和外延有深的认识,争取打成思维上的认同,避免理解的偏差和错误;二来更要让学生能融入到他原有的知识结构体系中,把在碰撞中的问题在起始阶段帮助他们搞透彻。

  这是一个很难处理的环节,因为学生是不是能准确积极的思维是你不能控制的,现在的学生总是喜欢去用这些东西死死的去做题,根本不去深刻理解其中的内涵,总是在不断的做题中去发现自己对概念定理的误区,从而在错误中爬起来,爬起来再倒下,如此数个回合,有些明白了,有些就觉得难的要死。其实根本的原因还是在第一次接触这个内容的课堂中自己埋下了“惨死”的伏笔!

  回首这堂课的设计,在公开课结束以后总体感觉还是不错:

  1、课前设计4个前置活动,基本已经把定理中基本环节搞清了,但是对于核心的部分还没有处理好;

  2、通过课内探究的第5个活动,(学生课前的做的'学案都错误了)旨在让学生养成一种分类讨论的思想,同时更好的明确定理中为什么两个原始向量必须不共线;

  3、作为定理的探究还要进一步的明确任意向量都可以有两个原始向量线性表示中的任意,这个任意性的处理也是这堂课中的难点,由此也要把定理的拓展定理搞明白,让学生真正知道好多问题的实质在何方!

  4、定理中存在唯一性的问题很好处理,学生理解也没有问题,这是很好的表现。

  总评此定理要明确不共线、存在唯一、对于任意向量的分类处理以及从中拓展的定理和应用。

  存在的几个问题:

  1、在最后的环节中处理有点仓促,还没有小结;

  2、课堂把握上前松后紧,如果最后的课堂检测,分组处理会更好,这样可以有小结反思的时间;

  3、课件的制作中对于拓展定理的证明可以提到前面一张幻灯片,这样似乎更自然;

  4、路漫漫的环节,没有处理,本来是想出彩的,可是没有出上呵呵,但是我的观点还是应该把课堂延续到课外,让学生能知道下一节课的学习其实和以前我们学习的东西是有连贯性的,告诫学生需要周而复始的一点一滴的积累,把课堂的每一个细节都做好。

【平面向量教学反思】相关文章:

《平面图形的拼组》教学反思03-25

《平面图形复习》教学反思(精选17篇)02-18

直角平面坐标系教学反思01-11

《认识平面图形》教学反思范文通用03-31

平面直角坐标系教学反思范文通用04-18

匆匆教学反思教学反思11-17

夜色教学反思教学反思11-25

音乐教学反思教学反思03-07

教学反思体育教学反思最新11-18