长方体和正方体的教案(精选11篇)
作为一名老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么应当如何写教案呢?下面是小编帮大家整理的长方体和正方体的教案,仅供参考,希望能够帮助到大家。
长方体和正方体的教案 1
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:
1.长方体和正方体的特征;
2.立体图形的识图。
教学难点:
1.长方体和正方体的特征;
2.立体图形的识图。
教具准备:
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。学具:长方体和正方体纸盒。
教学设计:
一、复习准备
1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。
2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。教师提问:这些物体的各部分都在一个面上吗?(不是)教师明确:这些物体的各部分不在一个面上,它们都是立体图形。
3.引入:今天这节课我们要进一步认识长方体有什么特征。
教师板书:长方体的认识
二、学习新课
(一)长方体的特征
1.请同学取出自己准备的长方体。教师提问:请用手摸一摸长方体是由什么围成的?请用手摸一摸两个面相交处有什么?请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2.参考讨论提纲来研究长方体的特征。
?演示动画“长方体的特征”】
讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
教师:请完整地说一说长方体的特征。
3.比较立体图形与平面图形的区别。
老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?请观察,你能看到几个面?哪几个面?你能看见几条棱?哪几条棱?
教师介绍长方体的画法:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。
4.出示长方体框架观察。
教师提问:框架上的12条棱可以分几组?怎样分?相交于一个顶点的三条棱长度相等吗?
教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的`长、宽、高。
(二)正方体特征
1.【演示动画“正方体的特征”】
教师提问:看一看新得到的长方体与原来长方体比较有什么变化?(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)
2.对照长方体的特征学生自己研究正方体的特征。学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
3.学生讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
(正方体是特殊的长方体)
长方体和正方体的教案 2
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
(一)复习准备
1、提问:什么是体积?
2、请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。
教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)学习新课
1、长方体的体积。
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的'长、宽、高不同,即形状不相同而体积相同呢?
(因为它们都含有同样多的体积单位——12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:
一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。
学生操作,看电脑动画图像。教师板书:
3(厘米) 3(厘米) 2(厘米) 18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:
5(厘米) 4(厘米) 3(厘米) 60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:v=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。
答:它的体积是84厘米3。
练习(投影出题,学生口答。)
一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2、正方体体积。
(1)请学生看电脑动画录像:
长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?
问:这个正方体的体积可以求出来吗?
学生口答,老师板书:3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)
问:
①棱长为2分米,求它的体积?
②棱长为4厘米,求它的体积?
学生口答,老师板书:2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用v表体积,a表示棱长,公式可写成:v=aaa或者v=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。
答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。
(3)说一说长方体和正方体的体积计算方法和字母公式。
教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
(三)巩固反馈
1、口答填空。课本p35练习七:2,3。
2、口答填表:
3、判断正误并说明理由。
①0.23= 0.2×0.2×0.2;( )
②5x2=10x;( )
③一个正方体棱长4分米,它的体积是:43=12(分米3);( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )
(四)课堂总结
长方体的体积计算方法及公式。
正方体的体积计算方法及公式。
板书设计
长方体和正方体的教案 3
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标:
1、学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2、会用求长方体和正方体表面积的方法解决生活中的简单问题。
3、培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1、什么是长方体的长、宽、高?什么是正方体的棱长?
2、指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1、教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的'前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2、学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0、7×0、4+0、7×0、4+0、5×0、4+0、5×0、4+0、7×0、5+0、7×0、5=0、28+0、28+0、2+0、2+0、35+0、35=1、66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0、7×0、4×2+0、5×0、4×2+0、7×0、5×2=0、7+0、56+0、4=1、66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0、7×0、4+0、5×0、4+0、7×0、5)×2=0、83×2=1、66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1、完成教材第23页“做一做”。
2、完成教材第24页“做一做”。
3、完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
长方体和正方体的教案 4
教学内容:
求一些不是完整六个面的长方体、正方体的表面积
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
求一些不是完整六个面的长方体、正方体的表面积。
教具运用:
课件
教学过程:
一、复习导入
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授
1.教材25页第5题
(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的`面积至少需要多少平方厘米?
(2)学生读题,看图,理解题意。
(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384 (cm2)
方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)
答:这张商标纸的面积至少需要384平方厘米。
2.教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45 (dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业
完成教材第26页练习六第9、10题。
四、课堂小结
提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计:
长方体和正方体的教案 5
教学目标:
1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。
2、能力目标:指导启发学生运用观察、测量等方法,探究长方体和正方体的有关特征,开发学生智能。
3、情感态度目标:通过观察、摆弄实物帮助学生建立起空间观念。
教具学具:
教师准备:墨水盒、牙膏盒、魔方、乒乓球等。
学生准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。
教学手段:多媒体辅助教学
教学过程:
一、导入新课
师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)
师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比如:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(学生举例)
那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)
二、探究新知
1、认识长方体各部分名称
师:长方体有什么特征呢?要探讨这个问题,首先让我们来认识一下长方体各部分的名称。请同学们拿出准备的长方体学具或实物,用手摸一摸,你摸到了长方体的哪一部分?然后打开书20页,看看你摸到的部分在长方体中叫什么?看谁最先找到答案。(根据学生回答板书:面、棱、顶点)
师:请同学们放下书,看老师的演示,边看边用手摸摸长方体学具,感觉一下长方体的面、棱、顶点。(电脑演示长方体的面、棱、顶点)
2、认识长方体的特征(分组合作学习)
师:认识了长方体的面、棱、顶点,下面我们就来研究长方体的这几部分各有什么特征?(出示学习提纲):
1、长方体有几个面?这些面是什么图形?相对的面面积有什么关系?
2、长方体有几条棱?每组相对的棱长度有什么关系?
3、长方体有几个顶点?请同学们根据学习提纲自由选择方法合作学习21页内容。看看你用了哪些方法,都学会了什么?(研讨)
师:谁能把你们的学习结果汇报一下。
生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。
师:你有这样的长方体吗?(有,出示)哪是相对的面?有几组?(指实物回答)
生:长方体相对的面面积相等。
师:你怎么知道的?
生:我用剪子把相对的面剪下来比较。(师电脑演示“相对面相等”)
师:说说棱的特点。
生:长方体有12条棱。
师:可以分成几组?
生:可以分成3组,每组有4条,每组的4条棱长度相等。(教师演示“相对棱相等”)
师:你用什么办法来证明相对的棱长度相等?
生1:用尺子量的。
生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。
师:噢,你用的是反证法来说明。
生:老师我把长方体的棱分成了4组,每组有3条,就是从一个顶点引出的3条棱。
师:这种分法也是正确的,而且很独特。谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)
1、认识长方体的长、宽、高
师:刚才我们把三条棱相交的'一点叫做顶点,这也就是说过长方体的一个顶点有三条棱,这三条棱的长度分别叫什么?请同学们看书后回答。
2、认识长方体直观图
师:下面请同学们再次拿出长方体学具,将它放在眼前的不同方位,观察:你看到了长方体的几个面?都是什么图形?
生:(1个、2个、3个)都是长方形的。
生:不对,从我这里看,它的左面和上面就是平行四边形。
师:同学们观察的非常细致。(电脑演示直观图)我们在作图时,除了前面和后面外,其它各面都画成平行四边形,但实际上是长方形。(师边说边作图,并强调看不见的棱用虚线来表示)
3、自学正方体
师:想一想:如果将长方体的长、宽、高调整,使长、宽、高相等,会得到什么形体呢?(教师演示将长方体变成一个正方体)它也叫立方体。出示魔方:它有什么特征呢?(出示自学提纲):
1、正方体有几个面?大小怎样?
2、正方体有几条棱?长短有什么关系?
3、正方体有几个顶点?请同学们边观察边自学22页。(汇报、板书)
4、比较二者的异同
师:同学们观察学具看板书,谁能说说长方体和正方体的有什么相同之处和不同之处。(学生叙述,师用两种色笔分别圈画。)通过以上比较,你发现了什么?(长方体的所有特征正方体都具有,而正方体的特征长方体不一定全有。由此,我们可以得出结论:正方体是一种特殊的长方体。)我们可以用这样的图来表示它们之间的关系。(师演示集合图)
三、过渡:这节课,我们认识了长方体和正方体的实物与图形,归纳了长方体和正方体的特征,还分析了二者的关系。下面我们来做做练习,检验自己是否对长方体和正方体有了明确的认识。
四、巩固应用(电脑出示)
长方体和正方体的教案 6
教材分析
“长方体和正方体的认识”这部分内容是在学生过去初步认识长方体和正方体的基础上,进一步教学的。这是学生比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。
为了使学生较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要学生自己多动手。除了让学生通过看一看,摸一摸,数一数,量一量,来认识长方体和正方体的特征以外,还要求学生动手用硬纸板做一长方体和正方体,这样既巩固了所学的'知识,也为后面学习长方体和正方体的表面积和体积做了准备。
学情分析
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
教学目标
情感、态度目标:
1.在合作中发现长方体的特征,使学生感受到学习的乐趣。
2.通过寻找生活中的长方体,使学生感受到数学来源于生活,并应用于生活中。
知识、技能目标:
1.使学生知道长方体的面、棱、顶点的含义。
2.通过观察、操作等活动掌握长方体、正方体的特征,知道它们之间的关系,认识长方体的长、宽、高(正方体的棱长)。
过程、方法目标:
1.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
2.渗透子集思想,并进行辩证唯物主义的启蒙教育。
教学重点和难点
探索、发现长、正方体的特征及长、正方体的关系,认识长方体的长、宽、高(正方体的棱长)。
教学过程
长方体和正方体的教案 7
活动目标:
1、认识长方体与正方体,能区分长方体与正方体。
2、感受行与体的不同,发展空间知觉。
3、培养动手动脑及合作的能力。
活动准备:
1、长方体纸盒若干个、画有花的长方形若干;
2、正方体、长方体物品若干;
3、幻灯片。
活动过程:
一、认识长方体
1、观察桌面上的操作材料小朋友们,你们看看桌子上有什么呀?今天老师要请小朋友用这些东西来玩个"找朋友"的。
2、教师讲解操作要求这个纸盒老师给它们穿上了漂亮的衣服,等会儿请小朋友们先将纸盒的衣服"脱"下来,数一数它总共有几件衣服,再帮衣服找出和它自己同样大小的衣服做好朋友,然后请你把这对好朋友身上的花涂上相同的颜色,涂好后再将这些衣服穿回到纸盒的身上。
3、幼儿操作,教师指导。
4、分析幼儿操作结果
(1)将每组幼儿的长方体展示在上面,教师与幼儿一起来观察。
(2)刚才我们小朋友都将纸盒的衣服"脱"下来过了,你们说它有几件衣服呀?(6件)我们来看看到底是不是6件。教师逐一将衣服"脱"下展示在黑板上。那你们说这个纸盒有几个面啊?
(3)你们看看这6个面谁和谁是好朋友?也就是它俩的大小是一样的?(教师将6个面是一对的两两放在一起)
(4)现在我将它们都穿回去,这个面在这里,这个面……
(5)上下两个面是一样大的,左右两个是一样大的,前后两个是一样大的。
5、教师小结:像纸巾盒、牛奶盒这样的`盒子,有6个面,每个面都是长方形,相对的两个面大小一样的形体我们叫长方体(出示字体:长方体)二、认识正方体1、(教师出示正方体)小朋友们,你们看这个是长方体吗?是的请举手。
2、那它倒底是不是呢?我们来看看,一起数数它有几个面?(6个),它每个面都是正方形,这6个正方形它们的大小都一样,像这样有6个面,每个面都是正方形,而且这6个正方形的大小都一样,这样的形体我们叫正方体(出示正方体字体),正方体也是长方体。
三、区分正方体和长方体
1、小朋友们,刚才我们认识了长方体和正方体,老师在后面为小朋友们准备了很多的物体,请你到后面去挑选一个长方体或是正方体,看哪个小朋友能又快又好的挑来回到自己的座位上来。
2、提问个别小朋友他挑了什么,是什么体?
3、请幼儿将手中的长方体和正方体分别放入两筐子。
四、寻找生活中长方体和正方体
1、在生活中你还见过哪些物体也是长方体或者是正方体?
2、观看放映幻灯片。
五、延伸活动(教师出示有两个面是正方形的长方体)老师这里还有一个长方体,这个长方体它这两个面是正方形,请小朋友回去后可以为它也去穿穿衣服,你也会发现一个秘密。
长方体和正方体的教案 8
教学目标
1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。
2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念。
教学重点
表面积的意义。
教学难点
长方体表面积的计算方法。
教学过程
一、复习准备。
1、说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空。
这个长方体上、下两个面的长是()宽是()。
左、右两个面的长是()宽是()。
前、后两个面的长是()宽是()。
3、想一想。
长方体和正方体都有几个面?(6个面)
二、揭示课题。
今天这节课我们就来学习和研究有关这6个面的一些知识。
三、教学新课。
(一)长、正方体表面积的意义。
1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上。
2、沿着长方体和正方体的棱剪开并展平。(老师先示范,学生再做)
3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积。
(板书:长方体和正方体的表面积。)
(二)长方体表面积的计算方法。
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
1、这题的问题,实际上就是要我们求什么?
2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3、学生分组讨论。
6×5×2+6×4×2+5×4×2
=60+48+40
=148(平方厘米)
(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(平方厘米)
4、比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的'面积之和,然后算总和。解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)。
四、巩固练习。
1、一个长方体长4米,宽3米,高2.5米。它的表面积是多少平方米?(用两种方法计算)
2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米。做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结。
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2
六、课后作业。
1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2、一个长方体的形状大小如下图。
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
七、板书设计
长方体和正方体的表面积
长方体或者正方体6个面的总面积,叫做它的表面积。
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
答:至少要用148平方厘米的硬纸板。
探究活动
小小设计师
活动目的
1、理解正方体表面积的意义。
2、发展学生的空间观念。
活动形式
每4名学生为一组,分小组设计。
活动题目
纸箱厂要用硬纸板制作立方体。用下面的六个正方形连接在一起,组成的平面图形经折叠后正好能构成立方体,这样的图形我们就叫立方体的表面展开图。请你设计不同的立方体表面展开图。
参考答案
在立方体展开图的设计中,为了使图形既不重复又不遗漏,就需要进行适当的分类。我们称立方体展开图中最长的一条为主干,这一条如果由四个正方形组成,就称主干为四方连,同样主干有三方连,二方连等。这样,我们把展开图分成以下几类。
(1)主干为四方连。
(2)主干为三方连。
(3)主干为二方连。
【思考】立方体展开图中是否有主干为五方连的?
长方体和正方体的教案 9
教学目标
1、理解求长方体、正方体表面积的计算方法。
2、会正确计算长方体、正方体的表面积。
3、培养学生善于观察周围事物,并能灵活运用所学知识。
教学重点
建立表面积概念,初步学会计算长方体和正方体的表面积.
教学难点
正确建立表面积的概念.
教学步骤
一、复习旧知
指出课件中长方体纸盒的长、宽、高,并算出每个面的面积是多少?每个面中的长方形长和宽和长方体的长、宽、高有什么关系。
学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽;
前后两个面大小相等,它是由长方体的长和高作为长和宽;
左右两个面大小相等,它是由长方体的高和宽作为长和宽.
二、探究新知.
(一)建立长方体表面积的概念.
1、想一想:什么是长方体的表面积.
2、学生交流什么是长方体的表面积.
3、教师板书:长方体6个面的面积之和,叫做它的表面积.
(二)长方体表面积的计算方法.
1、怎么求长方体的表面积?想一想,试一试。
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积。”
学生板书解题方法
第一种解法:
长方体表面积=6个面积的和=长×高+长×高+高×宽+高×宽+长×宽+长×宽
6×4+6×4+4×5+4×5+6×5+6×5
=24+24+20+20+30+30
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第二种解法:
长方体表面积=上下面面积+前后面面积+左右面面积=长×宽×2+长×高×2+高×宽×2
6×5×2+6×4×2+4×5×2
=60+48+40
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第三解法:
长方体表面积=(长×宽+长×高+高×宽)×2(6×5+6×4+5×4)×2 =74×2 =148(平方厘米)
答:至少要用148平方厘米硬纸板.
3、思考:
(1)比较三种解法有什么不同?有什么联系?哪种解法简便?(2,3种方法都比较简便)
长方体表面积=长×宽×2+长×高×2+高×宽×2 长方体表面积=(长×宽+长×高+高×宽)×2
(2)计算长方体表面积时,最关键的是找出什么?(要正确找出3组面中每个面的长和宽,就容易算出每个面的面积和长方体的表面积。)
4、正方体的表面积
计算棱长为10厘米的正方体的表面积?怎样算?
学生试做,总结:正方形的表面积=棱长2×6
三、总结提升
这节课我们学习了什么知识?我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
1、选择:
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
A、2×7×2+6×7×2+6×2 B、(2×7+2×6+6×7)×2 C、2×7+2×6+6×7
2、给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)
A、(1×1+1×3+1×3)×2 B、1×1×2+1×3×4 C、1×1×2+1×4×3
讨论得出:底面周长×高=4个侧面的`面积
3、思考题:
我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?
小结:计算的结果是能做成的,但在实际操作中发现其中有两块不完整,是需要用电焊拼的。这件事告诉我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。
教学反思
在本节课教学中,我把学生自己动手解决问题作为重要的目标,发展学生的自主学习能力,一个问题的解决需要时间和空间,只有给学生留有较大的时间和空间,学生才能有所发现、有所创造,这样才能充分激发学生的思维。
长方体和正方体的教案 10
教学目标:
1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。
2、在操作中认识长、宽、高和正方体的棱长。
3、培养学生的空间想象能力和空间观念。
教学重难点:
通过实物认识长、正方体,了解长(正)方体的特征。
教学过程:
一、复习提问
请同学们回忆一下,我们已经学过哪些平面图形? 长方形和正方形各有什么特征?这两种平面图形之间有什么关系? 我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)
二、探究新知
(一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的'形状是长方体的?学生举例。 我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。
(二)认识长方体。
1.教师拿出火柴盒的模型,说明面、棱和顶点。
2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。
面 棱 顶点 长方体 数量 形状 大小 数量 长度 数量 位置
(1)探究完成实验报告。
(2)汇报讨论结果。
(3)认识长方体的长、宽、高。
4.引导学生 指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。
5.练习: 要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。
(教具)
(三)认识正方体
1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。 独立观察提纲:
(1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?
(2)摸一摸,正方体有多少条棱?它们的长度相等吗?
(3)找一找,正方体有几个顶点? 独立填写实验操作报告: 面 棱 顶点 正方体 数量 形状 大小 数量 长度 数量 位置 1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征 2.比较长方体和正方体有何异同? 相同点:6个面、12条棱、8个顶点。 不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。 3.引导学生认识长、正方体的关系:
(四)新课小结
这结课我们学习了什么内容?你还有什么问题?
三、看书质疑(略)
四、巩固练习
(1)长方体和正方体都有6个面,12条棱,8个顶点。( )
(2)长方体的六个面都是长方形。( )
(3)正方体是由六个正方形组成的图形。( )
(4)正方体是特殊的长方体。( )
长方体和正方体的教案 11
教学目标
1.1知识与技能:
使学生学会计算长方体和正方体的体积,并能利用公式正确进行计算。
1.2过程与方法:
在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。
1.3情感态度与价值观:
使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。
教学重难点
2.1教学重点:
2掌握长、正方体体积的计算方法,解决实际问题。
2.2教学难点:
长、正方体体积公式的推导过程
教学工具
教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)每组24个边长1立方厘米的小木块
教学过程
一、复习引入
1、下列长方体的长、宽、高各是多少:
长:8厘米长:6分米长:8厘米长:12米
宽:4厘米宽:2.5分米宽:4厘米宽:10米
高:5厘米高:10分米高:4厘米高:1.5米
2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?
3、怎样知道这个长方体的体积是多少呢?
今天我们就一起来学习长方体和正方体的体积。(板书:长方体和正方体的体积)
二、新知探究
1、长方体的体积。
(1)活动一:
师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):
A、四人小组合作用12个小正方体摆形状不同的长方体;
B、每摆出一种请在学习单上做好记录,然后再摆下一种;
C、摆完后想想你发现了什么,在四人小组内交流;
D、每组选出一位代表进行汇报。
生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:
师:观察表格,你发现了什么?
引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。
板书:体积=每行个数×行数×层数
师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的',郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)
你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)
(2)活动二:
师:四人小组合作,你们能摆出一个体积更大的长方体吗?
预设:长5厘米,宽5厘米,高4厘米。
师:你发现了什么?每排个数、排数、层数相当于长方体的什么?
生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。
2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。
(2)观察上面个部分之间的关系,可以得出:
第一个:5=5×1×1
第二个:15=5×3×1
第三个:12=3×2×2
通过上面的关系式,可以得出:长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:V=a×b×c。
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
3、正方体的体积。
因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长
如果用字母V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:V=a·a·a。
a·a·a也可以写作a ?,读作“a的立方”,表示3个a相乘。
正方体的体积计算公式一般写成V=a3。
三、巩固提升
1、计算下面图形的体积。
V=abh=7×3×3=63(cm?)
V=a3=4×4×4=64(cm)
2、求下列长方体的体积。
8×4×5=160(cm3) 6×2.5×10=15(dm3) 8×4×4=128 (cm3) 1.5×10×12=180(m3)
3、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽是2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?
解:V=abh
=2.9×1×14.7
=42.63(m?)
答:这块石碑的体积是42.63立方米。
4、判断正误并说明理由。
(1)0.23=0.2×0.2×0.2。( √ )
(2)5X3=10X。( × )
(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。( × )
( 4 )一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( × )
5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?
48÷8÷4=1.5(分米)
答:它的高是1.5分米。
6、一个长方体的棱长总和是96厘米。它的长10厘米,宽8厘米,它的体积是多少立方厘米?
96÷4=24(厘米) 24-10-8=6(厘米)
10×8×6=480(立方厘米)
答:它的体积是480立方厘米。
7、一个无盖的长方体鱼缸,长8分米,宽6分米,高7分米,制作这个鱼缸共需玻璃多少平方分米?这个鱼缸的体积是多少?
(8×6)+(8×7+6×7)×2=244(平方分米)
8×6×7=336(立方分米)
答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。
课后小结
这节课我们学习了什么?
我们学习了长方体和正方体体积的计算公式。
长方体的体积=长×宽×高,V=a×b×h
正方体的体积=棱长×棱长×棱长,V=a×a×a=a3
板书
长方体和正方体的体积
长方体的体积=长×宽×高
V=a×b×h
正方体的体积=棱长×棱长×棱长
V=a×a×a=a3
【长方体和正方体的教案】相关文章:
《长方体和正方体的认识》教案02-18
《长方体和正方体的体积》教案03-03
认识长方体和正方体大班教案04-17
长方体和正方体表面积教案01-25
长方体和正方体的体积计算教案03-09
《长方体和正方体的认识》教案15篇03-04
长方体和正方体的教学反思12-22
长方体、正方体的认识教案08-30
《正方体与长方体》大班教案06-12