高二数学教案

时间:2022-12-28 14:33:57 教案 我要投稿

高二数学教案

  作为一名教师,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。怎样写教案才更能起到其作用呢?下面是小编收集整理的高二数学教案,欢迎阅读,希望大家能够喜欢。

高二数学教案

高二数学教案1

  课题:命题

  课时:001

  课型:新授课

  教学目标

  1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

  2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

  3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

  教学重点与难点

  重点:命题的概念、命题的构成

  难点:分清命题的条件、结论和判断命题的真假

  教学过程

  一、复习回顾

  引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

  二、新课教学

  下列语句的表述形式有什么特点?你能判断他们的真假吗?

  (1)若直线a∥b,则直线a与直线b没有公共点.

  (2)2+4=7.

  (3)垂直于同一条直线的两个平面平行.

  (4)若x2=1,则x=1.

  (5)两个全等三角形的面积相等.

  (6)3能被2整除.

  讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的'判断为真,(2)(4)(6)的判断为假。

  教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

  抽象、归纳:

  1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

  命题的定义的要点:能判断真假的陈述句.

  在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

  例1:判断下列语句是否为命题?

  (1)空集是任何集合的子集.

  (2)若整数a是素数,则是a奇数.

  (3)指数函数是增函数吗?

  (4)若平面上两条直线不相交,则这两条直线平行.

  (5)=-2.

  (6)x>15.

  让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

  解略。

  引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

  通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

  过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

  2、命题的构成――条件和结论

  定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

  例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

  (1)若整数a能被2整除,则a是偶数.

  (2)若四边行是菱形,则它的对角线互相垂直平分.

  (3)若a>0,b>0,则a+b>0.

  (4)若a>0,b>0,则a+b<0.

  (5)垂直于同一条直线的两个平面平行.

  此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

  此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

  解略。

  过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

  3、命题的分类

  真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

  假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

  强调:

  (1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

  (2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

  判断一个数学命题的真假方法:

  (1)数学中判定一个命题是真命题,要经过证明.

  (2)要判断一个命题是假命题,只需举一个反例即可.

  例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

  (1)面积相等的两个三角形全等。

  (2)负数的立方是负数。

  (3)对顶角相等。

  分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

  三、巩固练习:

  P4第2,3。

  四、作业:

  P8:习题1.1A组~第1题

  五、教学反思

  师生共同回忆本节的学习内容.

  1、什么叫命题?真命题?假命题?

  2、命题是由哪两部分构成的?

  3、怎样将命题写成“若P,则q”的形式.

  4、如何判断真假命题.

高二数学教案2

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的`,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

高二数学教案3

  一、教材分析

  推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。

  二、教学目标

  (1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式

  (2)过程与方法:了解合情推理和演绎推理的区别与联系

  (3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。

  三、教学重点难点

  教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系

  教学难点:演绎推理的应用

  四、教学方法:探究法

  五、课时安排:1课时

  六、教学过程

  1. 填一填:

  ① 所有的金属都能够导电,铜是金属,所以 ;

  ② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;

  ③ 奇数都不能被2整除,20xx是奇数,所以 .

  2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?

  3.小结:

  ① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.

  要点:由_____到_____的推理.

  ② 讨论:演绎推理与合情推理有什么区别?

  ③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?

  小结:三段论是演绎推理的一般模式:

  第一段:_________________________________________;

  第二段:_________________________________________;

  第三段:____________________________________________.

  ④ 举例:举出一些用三段论推理的例子.

  例1:证明函数 在 上是增函数.

  例2:在锐角三角形ABC中, ,D,E是垂足. 求证:AB的中点M到D,E的'距离相等.

  当堂检测:

  讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?

  讨论:演绎推理怎样才能使得结论正确?

  比较:合情推理与演绎推理的区别与联系?

  课堂小结

  课后练习与提高

  1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )

  A.一般的原理原则; B.特定的命题;

  C.一般的命题; D.定理、公式.

  2.因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论).上面的推理的错误是( )

  A.大前提错导致结论错; B.小前提错导致结论错;

  C.推理形式错导致结论错; D.大前提和小前提都错导致结论错.

  3.下面几种推理过程是演绎推理的是( )

  A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则B =180B.由平面三角形的性质,推测空间四面体的性质;.

  4.补充下列推理的三段论:

  (1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.

  (2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数.

  七、板书设计

  八、教学反思

高二数学教案4

  教学准备

  教学目标

  熟练掌握三角函数式的求值

  教学重难点

  熟练掌握三角函数式的求值

  教学过程

  【知识点精讲】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

  【例题选讲】

  课堂小结】

  三角函数式的求值的'关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

高二数学教案5

  教学目标:

  1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

  2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

  教学重点

  体会直角坐标系的作用。

  教学难点

  能够建立适当的直角坐标系,解决数学问题。

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学.

  教 具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

  情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  二、学生活动

  学生回顾

  刻画一个几何图形的位置,需要设定一个参照系

  1、数轴 它使直线上任一点P都可以由惟一的实数x确定

  2、平面直角坐标系

  在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

  3、空间直角坐标系

  在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

  三、讲解新课:

  1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

  任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

  2、确定点的位置就是求出这个点在设定的坐标系中的坐标

  四、数学运用

  例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

  变式训练

  如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

  例2 已知B村位于A村的'正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?

  变式训练

  1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

  2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

  例3 已知Q(a,b),分别按下列条件求出P 的坐标

  (1)P是点Q 关于点M(m,n)的对称点

  (2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

  变式训练

  用两种以上的方法证明:三角形的三条高线交于一点。

  思考

  通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

  五、小 结:本节课学习了以下内容:

  1.平面直角坐标系的意义。

  2. 利用平面直角坐标系解决相应的数学问题。

  六、课后作业:

高二数学教案6

  [新知初探]

  1、向量的数乘运算

  (1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:

  ①|λa|=|λ||a|;

  ②当λ>0时,λa的方向与a的方向相同;

  当λ<0时,λa的方向与a的方向相反。

  (2)运算律:设λ,μ为任意实数,则有:

  ①λ(μa)=(λμ)a;

  ②(λ+μ)a=λa+μa;

  ③λ(a+b)=λa+λb;

  特别地,有(—λ)a=—(λa)=λ(—a);

  λ(a—b)=λa—λb。

  [点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ—a均无法运算。

  (2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0。

  2、向量共线的条件

  向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=λa。

  [点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不,任一实数λ都能使b=λa成立。

  (2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数。

  3、向量的线性运算

  向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。

  [小试身手]

  1、判断下列命题是否正确。(正确的打“√”,错误的.打“×”)

  (1)λa的方向与a的方向一致。()

  (2)共线向量定理中,条件a≠0可以去掉。()

  (3)对于任意实数m和向量a,b,若ma=mb,则a=b。()

  答案:(1)×(2)×(3)×

  2、若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()

  A、b=2aB、b=—2a

  C、a=2bD、a=—2b

  答案:A

  3、在四边形ABCD中,若=—12,则此四边形是()

  A、平行四边形B、菱形

  C、梯形D、矩形

  答案:C

  4、化简:2(3a+4b)—7a=XXXXXX。

  答案:—a+8b

  向量的线性运算

  [例1]化简下列各式:

  (1)3(6a+b)—9a+13b;

  (2)12?3a+2b?—a+12b—212a+38b;

  (3)2(5a—4b+c)—3(a—3b+c)—7a。

  [解](1)原式=18a+3b—9a—3b=9a。

  (2)原式=122a+32b—a—34b=a+34b—a—34b=0。

  (3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。

  向量线性运算的方法

  向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量。

高二数学教案7

  一、学习者特征分析

  本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。

  二、教学目标

  知识与技能

  1. 体会数学思维中的分析法和综合法;

  2. 会用分析法和综合法去解决问题。

  过程与方法

  1. 通过对分析法综合法的学习,培养学生的数学思维能力;

  2. 培养学生的数学阅读和理解能力;

  3. 培养学生的`评价和反思能力。

  情感态度与价值观

  1. 交流、分享运用数学思维解决问题的喜悦;

  2. 提高学生学习数学的兴趣;

  3. 增强学习数学的信心。

  三、教学内容

  本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。

  四、教学策略的设计

  1. 情境的设计

  情境描述

  情境简要描述

  呈现方式

  趣味问题

  从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?

  网页

  2. 教学资源的设计

  资源类型

  资源内容简要描述

  资源来源

  相关故事

  通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。

  网上下载

  学习网站

  专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。

  自行制作

  3. 教学工具:计算机

  4. 教学策略:自主探究学习策略,任务驱动策略、反思策略

  5. 教学环境:网络教室

  五、教学流程设计

  1、创设情景,吸引学生注意

  教师活动

  学生活动

  资源/工具

  设计思想

  提出“推理救命问题”

  积极思考,寻找方法

  学习网站

  以具有趣味性的故事入手,吸引学生的注意,点明本节课的目的。

  2、自主探究,获取知识

  教师活动

  学生活动

  资源/工具

  设计思想

  1、初试牛刀:让学生试做思维训练题。

  2、挑战高考题:在高考题中充分体现分析法,综合法。

  3、举一反三:让学生学会总结

  学以致用:

  4、把本节的方法应用到解决数学问题中。

  积极思考,互相交流,发现问题,解决问题。

  学习网站

  1、让学生在轻松活泼的氛围下带着问题,自主、积极地学习,有助于培养学生的自我探索的能力。

  2、超级链接控制性好,交互性强,可让学生在较短的时间内收集积累更多的信息,拓宽学生的知识面。

  3、培养学生收集信息、处理信息的能力。

  3、总结概念,深化概念

  教师活动

  学生活动

  资源/工具

  设计思想

  归纳本节的方法:分析法和综合法。并指出:数学思维的训练不单只是一节简单的专题课,我们的同学在平常多留心身边事物,多思考问题,不断提高数学思维能力。

  体会分析法和综合法的概念,并在论坛上发表自己对概念的理解。

  学习网站论坛

  通过对具体问题的概念化,加深对概念的理解。

  4、自主交流,知识迁移

  教师活动

  学生活动

  资源/工具

  设计思想

  提出宝藏问题并指导学生利用BBs论坛进行讨论

  学生在论坛里充分地发表自己的看法

  学习网站论坛

  通过自主交流,增强分析问题的能力和解决问题的能力

  5、在线测试,评价及反馈

  教师活动

  学生活动

  资源/工具

  设计思想

  利用学习网站制作一些简单的训练题目

  独立完成在线的测试

  学习网站

  及时反馈课堂学习效果。

  6、课后任务

  教师活动

  学生活动

  资源/工具

  设计思想

  布置课后任务:在网络上收集推理分析的相关例子,在学习网站的论坛上讨论。

  记录要求,并在课后完成。

  网络资源和学习网站

  通过课后的任务训练,进一步提高学生的数学思维能力,把思维训练延续到课堂外。

高二数学教案8

  一、课前预习目标

  理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

  二、预习内容

  1、双曲线的几何性质及初步运用。

  类比椭圆的几何性质。

  2。双曲线的渐近线方程的导出和论证。

  观察以原点为中心,2a、2b长为邻边的'矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  课内探究

  1、椭圆与双曲线的几何性质异同点分析

  2、描述双曲线的渐进线的作用及特征

  3、描述双曲线的离心率的作用及特征

  4、例、练习尝试训练:

  例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

  解:

  解:

  5、双曲线的第二定义

  1)。定义(由学生归纳给出)

  2)。说明

  (七)小结(由学生课后完成)

  将双曲线的几何性质按两种标准方程形式列表小结。

  作业:

  1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

  (1)16x2—9y2=144;

  (2)16x2—9y2=—144。

  2。求双曲线的标准方程:

  (1)实轴的长是10,虚轴长是8,焦点在x轴上;

  (2)焦距是10,虚轴长是8,焦点在y轴上;

  曲线的方程。

  点到两准线及右焦点的距离。

高二数学教案9

  一、教材分析

  【教材地位及作用】

  基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  【教学目标】

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

  过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

  情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  【教学重难点】

  重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

  难点:利用基本不等式推导不等式.

  关键是对基本不等式的理解掌握.

  二、教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

  三、学法指导

  新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

  四、教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  (一)基本不等式的教学设计创设情景,提出问题

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

  (二)探究问题,抽象归纳

  基本不等式的教学设计1.探究图形中的不等关系

  形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

  数的角度

  [问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

  学生讨论结果:。

  [问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

  咱们再看一看图形的变化,(教师演示)

  (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

  设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

  2.抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问题4]你能给出它的证明吗?

  学生在黑板上板书。

  [问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

  学生归纳得出。

  设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

  【归纳总结】

  如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  3.探究基本不等式证明方法:

  [问题6]如何证明基本不等式?

  设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

  方法一:作差比较或由基本不等式的教学设计展开证明。

  方法二:分析法

  要证

  只要证2

  要证,只要证2

  要证,只要证

  显然,是成立的。当且仅当a=b时,中的等号成立。

  4.理解升华

  1)文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2)符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

  当a=b时,取等号,即;

  仅当a=b时,取等号,即。

  3)探究基本不等式的几何意义:

  基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

  如图:AB是圆的直径,点C是AB上一点,

  CD⊥AB,AC=a,CB=b,

  [问题8]你能利用这个图形得出基本不等式的几何解释吗?

  (教师演示,学生直观感觉)

  易证RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.

  因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

  4)联想数列的知识理解基本不等式

  从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

  [问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的'结构?

  归纳得出:

  均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

  基本不等式的教学设计(四)体会新知,迁移应用

  例1:(1)设均为正数,证明不等式:基本不等式的教学设计

  (2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

  ,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

  设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

  (五)演练反馈,巩固深化

  公式应用之一:

  1.试判断与与2的大小关系?

  问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

  2.试判断与7的大小关系?

  公式应用之二:

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

  (2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

  (五)反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

  老师根据情况完善如下:

  知识要点:

  (1)重要不等式和基本不等式的条件及结构特征

  (2)基本不等式在几何、代数及实际应用三方面的意义

  思想方法技巧:

  (1)数形结合思想、“整体与局部”

  (2)归纳与类比思想

  (3)换元法、比较法、分析法

  (七)布置作业,更上一层

  1.阅读作业:预习基本不等式的教学设计

  2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

  3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

  设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

  五、评价分析

  1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

  2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

高二数学教案10

  一、教学目标:

  1、知识与技能目标

  ①理解循环结构,能识别和理解简单的框图的功能。

  ②能运用循环结构设计程序框图解决简单的问题。

  2、过程与方法目标

  通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

  3、情感、态度与价值观目标

  通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

  二、教学重点、难点

  重点:理解循环结构,能识别和画出简单的循环结构框图,

  难点:循环结构中循环条件和循环体的确定。

  三、教法、学法

  本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

  四、 教学过程:

  (一)创设情境,温故求新

  引例:写出求 的值的一个算法,并用框图表示你的算法。

  此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

  设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

  (二)讲授新课

  1、循序渐进,理解知识

  【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

  (1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

  引例“求 的值”这个问题的自然求和过程可以表示为:

  用递推公式表示为:

  直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的.结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

  (2)“ ”的含义

  利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

  ②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。

  ③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

  借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

  (3)初始化变量,设置循环终止条件

  由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

  【2】循环结构的概念

  根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

  教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

  2、类比探究,掌握知识

  例1:改造引例的程序框图表示①求 的值

  ②求 的值

  ③求 的值

  ④求 的值

  此例可由学生独立思考、回答,师生共同点评完成。

  通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

高二数学教案11

  一、教学目标

  本课时的教学目标为:①借助直角坐标系建立复平面,掌握复数的几何形式和向量表示;②经历复平面上复数的“形化”过程,理解复数与复平面上的点、向量之间的一一对应关系;③感悟数学的释义:数学是研究空间形式和数量关系的科学、笔者认为,教学目标总体设置得较为适切,符合三维框架、修改:“掌握复数的几何形式和向量表示”改为“掌握在复平面上复数的点表示和向量表示”。

  二、教学重点

  本课时的教学重点为:复数的坐标表示:几何形式与向量表示、教学重点设置得较为适切,部分用词表达配合教学目标一并修改、修改:复数的坐标表示:点表示与向量表示。

  三、教学难点

  本课时的教学难点为:复数的代数形式、几何形式及向量表示的“同一性”、首先,“同一性”说法有待商榷,这个词有着严格的定义,使用时需谨慎、其次,经过思考,复数的代数表示、点表示及向量表示之间的互相转化才是本课时的教学难点。

  四、教学过程

  (一)类比引入

  本环节通过实数在数轴上的“形化”表示,类比至复数,引出复数的'“几何形式”:复平面与点、但在设问中,有一提问值得商榷:实数的几何形式是什么?此提问较为唐突,在试讲课与正式课中学生均表示难以理解,原因如下、①学生最近发展区中未具备“实数的几何形式”,②实数的几何形式是教师引导学生对数的一种有高度的认识与表达,属于理解层面、经过思考,修改:①如何“画”实数?;②对学生直接陈述:我们知道,每一个实数都有数轴上唯一确定的一个点和它对应;反过来,数轴上的每一个点也有唯一的一个实数和它对应。

  (二)概念新授

  本环节给出复平面的定义及相关概念,并且帮助学生形成复数与复平面上点两者间的一一对应关系、教学设计中对概念的注释是:表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示虚数的点在四个象限或虚轴上,表示实数的点为原点、经过思考,修改:表示实数的点都在实轴上、实轴上的点表示全体实数;表示纯虚数的点都在虚轴上、虚轴上的点表示全体纯虚数与实数;表示虚数的点不在实轴上;实数与原点一一对应。

  (三)例题体验

  本环节通过三个例题体验,落实本课时的教学重点之一:复数的坐标表示:点表示;突破本课时的教学难点:复数的代数表示、点表示及向量表示之间的互相转化、例题1对课本例题作了改编,此例题的设计意图为从复平面上的点出发,去表示对应的复数,并且蕴含了计数原理中的乘法原理、值得一提的是,在课堂教学实施过程中,学生很清晰地建立起了两者之间的转化关系,并且使用了乘法原理、例题2的设计意图是从复数出发去在复平面上表示对应的点,而例题3的设计意图是从单个复数与其在复平面上的对应点之间的转化到两个复数与其在复平面上对应点之间的互相转化、例题2与例题3的设计符合学生的认知规律,但是在教学过程中没有配以图形来帮助学生理解,这是整个教学过程中的最大不足。

  (四)概念提升

  本环节继复数在复平面上的点表示之后,给出复数的向量表示,呈现了完整的复数的坐标表示、学生已经建构起复数集中的复数与复平面上的点之间的一一对应关系,结合他们的最近发展区:建立了直角坐标系的平面中的任意点均与唯一的位置向量一一对应,从而较为顺利地架构起复数与向量的一一对应关系、设计的例题是由笔者改编的,整合了向量与复数、点与复数以及向量与点之间的互相转化,巩固三者之间的一一对应关系、值得一提的是,设计的第3小问具有开放性,启发学生去探究由向量加法的坐标表示引出复数加法法则,在课堂教学实践中,已有学生产生这样的思考。

  在之后的教研组研评课中,老师们给出了对这节课的认可与中肯的建议,让笔者受益匪浅,笔者经过思考已经在上文中的各环节修改处得以体现落实、不过仍然有一点困惑,有老师提出甚至笔者备课时也有这样的犹豫:本课时是否将下一课时“复数的模”一并给出、笔者在不断思考教材分割成两课时的用意,结合试讲与上课的两次实践也说明,笔者所在学校的学生更适合这样的分割,第一课时让学生从不同角度感受复数,第二课时用模来巩固深化复数的坐标表示、本课时的课题是复数的坐标表示,蕴含了点坐标表示与向量坐标表示两块,第一课时先打开认识的视角,第二课时通过模来深入体验、

  当然教无定法,根据学情、因材施教,在理解教材设计意图的基础上对教材进行科学合理的改编也是很有必要的。

高二数学教案12

  课题:2。1曲线与方程

  课时:01

  课型:新授课

  一、教学目标

  (一)知识教学点

  使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。

  (二)能力训练点

  通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

  (三)学科渗透点

  通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

  二、教材分析

  1、重点:求动点的轨迹方程的常用技巧与方法。

  (解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)

  2、难点:作相关点法求动点的轨迹方法。

  (解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)

  教具准备:与教材内容相关的资料。

  教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  三、教学过程

  (一)复习引入

  大家知道,平面解析几何研究的主要问题是:

  (1)根据已知条件,求出表示平面曲线的方程;

  (2)通过方程,研究平面曲线的性质。

  我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。

  (二)几种常见求轨迹方程的方法

  1、直接法

  由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

  例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;

  (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。

  对(1)分析:

  动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。

  解:设动点P(x,y),则有|OP|=2R或|OP|=0。

  即x2+y2=4R2或x2+y2=0。

  故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。

  对(2)分析:

  题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:

  设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,

  其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点)。

  2、定义法

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的`条件,或利用平面几何知识分析得出这些条件。

  直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。

  分析:

  ∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。

  又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

  故P点到两定点距离之和是定值,可用椭圆定义

  写出P点的轨迹方程。

  解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。

  又P在半径OQ上。∴|PO|+|PQ|=2。

  由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。

  3、相关点法

  若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。

  例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。

  分析:

  P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。

  解:设点P(x,y),且设点B(x0,y0)

  ∵BP∶PA=1∶2,且P为线段AB的内分点。

  4、待定系数法

  求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。

  例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲

  曲线方程。

  分析:

  因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方

  ax2—4b2x+a2b2=0

  ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。

  ∴△=16b4—4a4b2=0,即a2=2b。

  (以下由学生完成)

  由弦长公式得:

  即a2b2=4b2—a2。

  (三)巩固练习

  用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。

  1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的

  2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?

  3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。

  答案:

  义法)

  由中点坐标公式得:

  (四)、教学反思

  求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。

  四、布置作业

  1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。

  2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。

  3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。

  作业答案:

  1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。

  2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。

高二数学教案13

  目的要求:

  1.复习巩固求曲线的方程的基本步骤;

  2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;

  3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。

  教学重点、难点:

  方程的求法教学方法:讲练结合、讨论法

  教学过程:

  一、学点聚集:

  1.曲线C的方程是f(x,y)=0(或方程f(x,y)=0的曲线是C)实质是

  ①曲线C上任一点的坐标都是方程f(x,y)=0的解

  ②以方程f(x,y)=0的解为坐标的点都是曲线C上的点

  2.求曲线方程的基本步骤

  ①建系设点;

  ②寻等列式;

  ③代换(坐标化);

  ④化简;

  ⑤证明(若第四步为恒等变形,则这一步骤可省略)

  二、基础训练题:

  221.方程x-y=0的曲线是()

  A.一条直线和一条双曲线B.两个点C.两条直线D.以上都不对

  2.如图,曲线的方程是()

  A.x?y?0 B.x?y?0 C.

  xy?1 D.

  x?1 y3.到原点距离为6的点的轨迹方程是。

  4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

  三、例题讲解:

  例1:已知一条曲线在y轴右方,它上面的每一点到A?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

  例2:已知P(1,3)过P作两条互相垂直的.直线l

  1、l2,它们分别和x轴、y轴交于B、C两点,求线段BC的中点的轨迹方程。

  2例3:已知曲线y=x+1和定点A(3,1),B为曲线上任一点,点P在线段AB上,且有BP∶PA=1∶2,当点B在曲线上运动时,求点P的轨迹方程。

  巩固练习:

  1.长为4的线段AB的两个端点分别在x轴和y轴上滑动,求AB中点M的轨迹方程。

  22.已知△ABC中,B(-2,0),C(2,0)顶点A在抛物线y=x+1移动,求△ABC的重心G的轨迹方程。

  思考题:

  已知B(-3,0),C(3,0)且三角形ABC中BC边上的高为3,求三角形ABC的垂心H的轨迹方程。

  小结:

  1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。

  2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。

  作业:

  苏大练习第57页例3,教材第72页第3题、第7题。

高二数学教案14

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣、

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线xx解题

  六、教学过程设计

  【设计思路】

  开门见山,提出问题

  例题:

  (1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)线段(d)不存在

  (2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的'学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学教案15

  一、教学目标

  1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、

  (2)能从数和形两个角度熟悉单调性和奇偶性、

  (3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、

  2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、

  3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、

  二、教学建议

  (一)知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系、

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像、

  (二)重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实、

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的'学生来说是比较困难的,因此要在概念的形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、

  (三)教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、

  (2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、

【高二数学教案】相关文章:

关于高二数学教案12-30

高二下学期数学教案12-14

《分类》数学教案08-17

人教版数学教案01-07

小学的数学教案03-24

幼儿的数学教案03-02

小学数学教案07-14

关于数学教案10-01

初中数学教案11-04