有理数的乘方教案

时间:2022-11-10 09:13:25 教案 我要投稿

有理数的乘方教案

  在教学工作者开展教学活动前,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?下面是小编为大家整理的有理数的乘方教案,希望对大家有所帮助。

有理数的乘方教案

  教学目标:

  1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.

  2、能力目标:会解决与科学记数法有关的实际问题.

  3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.

  教学重点与难点:

  教学重点:

  会用科学记数法表示大于10的数.

  教学难点:

  正确使用科学记数法表示数.

  教学过程:

  一、科学记数法

  用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:

  太阳的半径约696000千米

  富士山可能爆发,这将造成至少25000亿日元的损失

  光的速度大约是300000000米/秒;

  全世界人口数大约是6100000000.

  这样的大数,读、写都不方便,考虑到10的乘方有如下特点:

  102 = 100,103 = 1000,104 = 10000,?

  一般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如,

  6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]

  像上面这样把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.

  科学记数法也就是把一个数表示成a×10n的形式,其中1≤a的绝对值<10的数,n的值等于整数部分的位数减1.

  二、例题

  例1、用科学记数法记出下列各数:

  (1)1000000;(2)57000000;(3)123000000000

  解:(1)1000000 = 1×106

  (2)57000000 = 5.7×107

  (3)123000000000 = 1.23×1011.

  用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.

  注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.说明:在实际生活中有非常大的数,同样也有非常小的数.本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米=109米1,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一.用表达式表示为1米=109纳米,或者1纳米=米=米.

  三、课堂练习

  1.用科学记数法记出下列各数.

  (1)30060;(2)15400000;(3)123000.

  2.下列用科学记数法记出的数,原来各是什么数?

  (1)2×105;(2)7.12×103;(3)8.5×106.

  3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.

  4.把199 000 000用科学记数法写成1.99×10n3的形式,求n的值.

  课堂练习答案

  1.(1)3.006×104;(2)1.54×107;(3)1.23×105.

  2.(1)100000;(2)7120;(3)8500000.

  3.3.5×1010mm.

  4.n的值为11.

【有理数的乘方教案】相关文章:

有理数的乘方教案13篇11-10

有理数减法教案09-03

有理数的加法教案03-02

有理数的乘法教案09-29

《有理数的加法》教案02-25

《有理数的乘法》教案02-26

《有理数的加法》教案09-19

有理数的除法教案01-23

有理数的加法与减法教案01-28