圆的面积教案

时间:2022-10-24 18:03:42 教案 我要投稿

圆的面积教案集合七篇

  作为一名优秀的教育工作者,时常需要用到教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?下面是小编为大家整理的圆的面积教案7篇,仅供参考,希望能够帮助到大家。

圆的面积教案集合七篇

圆的面积教案 篇1

  教材分析

  1、《圆的面积》是人教版小学数学六年级上册第五单元中的一节课,本节内容包括教材67-71页例1、例2及69页“做一做”。

  2、本节课是在学习了圆的周长以后进行教学的,为后面学习求阴影部分面积做了铺垫。

  学情分析

  小学六年级学生在学习空间图形方面,已经具有一定的想象能力,并有了一定程度的计算能力,在学习方法上也有了一定的积淀,同时他们也具备一定的逻辑思维、抽象推理能力,他们能够自主、合作、探究地进行学习,对学习数学的兴趣浓厚。但是作为十来岁的学生,他们对事物的认识是十分有限的,加上他们的个人表现欲望十分强烈,自我控制能力差等因素的影响。因此 在教学时我凭借课件 结合学生的实际情况, 联系学生已有的知识点 设计教学环节确定教学方法, 确立教学重点、难点和目标 减少盲目性 注意培养学生的动手动脑能力,让学生通过动手把圆等分成16等份和32等份,学会用转化的思想找到圆的面积计算公式,让学生在动脑动手中掌握知识。

  教学目标

  一、知识与技能

  1、学生通过观察、操作、分析和讨论,推导出圆的`面积公式。

  2、能够利用公式进行简单的面积计算。

  3、培养学生空间概念和逻辑思维能力。

  二、过程与方法

  经历从未知转化已知过程,体验自主探究,合作交流的方法。

  三、情感态度与价值观

  渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重点和难点

  重点:正确计算圆的面积。

  难点:圆的面积公式推导过程。

圆的面积教案 篇2

  教材说明

  教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。

  这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力

  。 教学建议

  1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。

  2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。

  3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。

  4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。

  在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。

  5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。

  6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。

  7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:

  ①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;

  ②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;

  ③计算圆面积用面积单位,计算圆周长用长度单位。

  8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。

  9.关于练习二十四中一些习题的教学建议。

  第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。

  第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。

  第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。

  第9题,是实习作业,先让学生讨论测量的.方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。

  第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。

  第15*题,是求组合图形面积的练习。

  教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。

圆的面积教案 篇3

  教材分析

  本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

  学情分析

  学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的'面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

  教学目标

  知识与技能:

  1.理解圆的面积的概念。

  2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

  过程与方法:

  经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

  情感态度价值观:

  感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆片、课件。

圆的面积教案 篇4

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的.三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

圆的面积教案 篇5

  教学目标

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重、难点:圆面积公式的推导与运用。

  学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

  教学过程

  一、设疑导入,激发动机

  1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

  2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)

  3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

  二、动手操作,探索新知

  1.猜想、引导,确定方法

  师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

  (学生可能会想到长方形、平行四边形、三角形、梯形等。)

  师:请同学们看手中的.学具,想一想把圆怎样剪?剪成什么样的图形?

  (根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

  2.动手操作,尝试探究

  师请同学们动手剪拼一下,看到底能拼成什么图形。

  (学生动手操作,小组合作探究)

  师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

  3.课件演示,突破难点

  师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

  (1)圆与有近似的长方形有什么关系?

  (2)把圆16等份和32等份后,拼成的图形有什么区别?

  (3)如果等分份数仅需增加,结果会怎样?

  师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

  4.观察比较,导出公式

  师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

  学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2

  (可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

  5.尝试运用

  出示例3,读题列式,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  2.完成第116页做一做的第1题。

  3.看书质疑。

  三、运用新知,解决问题

  1.求下面各圆的面积,只列式不计算。

  直径50分米

  2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、课堂作业

  第118页的第3题和第4题。

圆的面积教案 篇6

  教学目标:

  1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

  3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

  教学重点:

  探索并掌握圆的面积公式,能正确计算圆的面积。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆的面积公式的推导图。

  一、回顾旧知,引入新知

  1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

  学生回答,教师予以肯定。

  2.提问:圆的.周长怎么计算?已知圆的周长,如何计算它的直径或半径?

  3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

  (板书:圆的面积)

  设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

  二、合作交流,探究新知

  1.教学例7。

  (l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

  (2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

  (3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

  (4)学生独立完成填空。

  (5)猜测:圆的面积大约是正方形面积的几倍?

  学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

  (6)出示例7后两幅图,按照同样的方法进行计算并填表。

  正方形的面积

  圆的半径

  圆的面积

  圆面积大约是正方形面积的几倍

  (精确到十分位)

  2.交流归纳:观察上面的表格,你有什么发现?

  通过交流,明确

圆的面积教案 篇7

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的'伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

【圆的面积教案】相关文章:

圆的面积教案09-21

圆的面积教案优秀02-27

圆的面积教案(精选18篇)05-17

圆扇形弓形的面积教案10-01

小学数学圆的面积的教案11-24

圆的面积教案(精选8篇)03-19

圆的面积教案15篇02-16

圆的面积教案(15篇)02-19

圆的面积教案(精选15篇)02-24

圆的面积教案汇编八篇01-17