圆的面积教案

时间:2022-08-18 10:24:20 教案 我要投稿

关于圆的面积教案汇编8篇

  作为一位优秀的人民教师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么你有了解过教案吗?以下是小编精心整理的圆的面积教案8篇,希望能够帮助到大家。

关于圆的面积教案汇编8篇

圆的面积教案 篇1

  一、复习导入

  1.课件出示圆:关于圆这个图形,你已经了解了一些什么?

  学生口答。

  2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)

  二、教学例7

  1.初步猜想:猜一猜圆的面积可能与什么有关?

  2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

  (1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

  提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)

  出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。

  提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。

  在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。

  (2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

  让学生观察例题中的下面两幅图,计算并填写图下的表格。

  3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

  学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

  三、教学例8

  1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

  2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。

  提问:拼成的图形像个什么图形?

  追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

  3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

  4.进一步想像:如果将圆平均分成64份、128份……也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

  5.推导公式。

  (1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。

  交流中借助图示小结:长方形的`面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

  追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

  (2)根据长方形面积的计算方法,怎样来计算圆的面积?

  根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。

  追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

  6.做“练一练”。

  核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

  四、教学例9

  1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

  2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

  3.学生独立列式解答,并组织交流。

  五、做练习十九的第1题

  1.指名读题,并要求说说对题意的理解。

  2.学生独立尝试解答。

  3.反馈交流。对解答错误的学生帮助其分析错误的原因。

  六、全课小结

  今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。

圆的面积教案 篇2

  教学内容:课本例3,第115页练习二十七的第1~5题。

  教学目的通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  点:圆面积计算公式。

  难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程():

  一、复习。

  1.口算:

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的.有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的长?

  长方形的宽是圆的哪部分?

  长方形的面积=长×宽

  圆的面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案 篇3

  第一课时

  教学内容

  圆的面积

  教材第67、第68页的内容。

  教学要求

  1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

  2.培养学生运用转化的思想解决问题的能力。

  重点难点

  重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  难点:理解圆的面积公式的推导过程。

  教具学具

  实物投影,各种图形的纸片。

  教学过程

  一导入

  1.我们学过哪些平面图形的面积公式?

  2.长方形、平行四边形和三角形的面积公式分别是什么?

  3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

  二教学实施

  1.明确圆的面积的概念。

  (1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

  学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

  (2)圆的大小是由什么决定的.?

  (3)展示由“曲”变“直”的渐变图。

  引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

  2.学生动手操作,推导圆的面积公式。

  为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

  (1)指导学生动手摆学具,并思考几个问题:

  你摆的是什么图形?

  你摆的图形的面积与圆的面积有什么关系?

  所摆图形的各部分相当于圆的什么?

  你如何推导出圆的面积?

  (2)学生动手摆学具,然后发言。

  拼成长方形:

  老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

  出示教材第67页上面的图加以说明。

  拼成的近似长方形的长和宽与圆的各部分有什么关系?

  从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

  3.利用公式计算圆的面积。

  出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

  指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

  板书:20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  老师强调指出:列出算式后,要先算平方,再与π相乘。

  三课堂作业新设计

  1.直接写出得数。

  22= 32= 42= 52= 62= 72=

  82= 92= 102= 0.22=0.72= 0.92=

  2.求下面各圆的面积。

  3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

  4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

  四思维训练

  计算阴影部分的面积。(单位:分米)参考答案

  课堂作业新设计

  1.491625364964811000.040.490.81

  2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

  3.28.26平方分米

  4.1.1304平方米

  思维训练

  3.44平方分米

  板书设计

  圆的面积

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  备课参考教材与学情分析

  本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  课堂设计说明

  1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

  2.教学时,强调知识迁移的过程。

  平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

  3.组织学生观察猜想。

  先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

圆的面积教案 篇4

  教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:理解和掌握圆面积的计算公式的推导过程

  教学难点:圆面积计算公式的推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的.面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇5

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的'周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

圆的面积教案 篇6

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的'半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案 篇7

  教材分析

  教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

  学情分析:

  1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

  2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

  教学目标

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的'知识解决一些简单的实际问题。

  3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点和难点

  教学重点: 圆的面积公式的推导及应用公式计算

  教学难点:探究圆的面积公式的推导过程

圆的面积教案 篇8

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的.长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

【圆的面积教案】相关文章:

圆的面积教案09-21

圆的面积教案优秀02-27

圆的面积教案(精选8篇)03-19

圆的面积教案(精选18篇)05-17

圆扇形弓形的面积教案10-01

圆的面积教案(精选15篇)02-24

圆的面积教案(15篇)02-19

小学数学圆的面积的教案11-24

圆的面积教案15篇02-16

【精华】圆的面积教案4篇07-17