- 相关推荐
《圆柱的体积》教案范文合集六篇
作为一无名无私奉献的教育工作者,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们应该怎么写教案呢?下面是小编精心整理的《圆柱的体积》教案6篇,欢迎阅读与收藏。
《圆柱的体积》教案 篇1
《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。
圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。
教学情境如下:
一:情境引入,感性认识
师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。
生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。
师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)
师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)
师:你发现了什么?
生:形状变,体积不变.
师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?
生:圆切割拼成一个近似的长方形。
师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?
生:把水倒入长方体容器中,再测量计算。
师:要求圆柱体铁块的体积呢?
生:把它浸入水中,求出排出水的体积。
师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。
二:自主探究,迁移转化
1、引导
师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。
(让学生互相讨论,应如何转化,然后组织全班汇报)
生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。
2、 操作
学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。
3、感知:将圆柱体模具(已切好)当场演示。
①让一位学生把切割好的一半拿上又叉开;
②另一位学生将切割好的另一半拼合上去;
③观察得到一个什么形体?同时你发现了什么?
以四人小组为单位进行探索、讨论、总结。
小组汇报:
生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。
4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。
5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?
6、汇报:
圆柱→近似长方体
①体积相等②底面积相等③高相等④表面积不相等,
根据学生的回答板书如下:
长方体的体积=底面积×高
↓ ↓ ↓
圆 柱 体 的 体 积 =底面积×高
引导学生用字母表示计算公式:V=Sh
师:要用这个公式计算圆柱的体积必须知道什么条件?
生:底面积和高。
师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?
生:根据公式先求出半径,再求出底面积即可…
教学反思:
教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的.立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。
实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。
《圆柱的体积》教案 篇2
教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的'关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。
《圆柱的体积》教案 篇3
教学目标:
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:
一、情景导入:
1、教师:(出示)多么温馨的'场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?
学生:1、比平日多了两个蛋糕。
2、两个蛋糕一个大一个小。
3、蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?
学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?
学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?
学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。
教师:板书:圆柱的体积
二、课上探究
1、教师:同学们回忆一下我们还学过那些立体图形?
学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?
学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关
师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
生1、圆柱的体积与圆柱的高有关。
生2、圆柱的体积与圆柱的底面积有关。
生3、圆柱的体积与圆柱的底面周长有关。
生4、圆柱的体积与圆柱的底面半径有关。
3、推导圆柱体积公式
①师: 同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?
生: 把圆转化成近似长方形来求面积的。
②师:我们一起来回忆把圆转化成近似长方形的过程,()
师: 你发现了什么?
生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。
③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?
生:把圆柱转化成近似的长方体。
④师用圆柱体演示转换过程,让学生说怎样转换的。
生:把圆柱平均分成16份拼成一个近似的长方体。
⑤师: 为了让大家看的更清楚,我们再演示一下这个转化过程。
再次演示把圆柱等分16等份,拼成近似的长方体。
再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?
生:分成的份数越多,拼成的图形越接近长方体。
⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?
学生分组讨论,汇报:
生:长方体的高和圆柱的高相等。
生:长方体的底面积和圆柱的底面积相等。
⑦师:你是怎么想的?
生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。
⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。
生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径
师:演示 长方体的体积=底面积×高
⑨师:那么圆柱的体积等于什么呢?
生:圆柱的体积=底面积×高
⑩下面我们再一起回忆一下转化的过程,()
让学生独立填答案,汇报:
三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。
《圆柱的体积》教案 篇4
最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。
……
师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?
生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?
生1:我是从书上看到的。
(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)
生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!
师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?
(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)
师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)
生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?
师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的.面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。
师:了不起的一种想法!(师情不自禁的鼓起了掌。)
生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。
师:你真会思考问题!
生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。
生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!
师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!
……
整节课不时响起孩子们、听课老师们热烈的掌声。
过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。
现从“对话”的视角来赏析这则精彩的片段。
一、“对话”唤发出学习热情。
《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。
二、“对话”迸发出智慧的火花
“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。
三、“对话”赢得心灵的敞亮和沟通
“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。
数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!
《圆柱的体积》教案 篇5
教学内容:
P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的.长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)
《圆柱的体积》教案 篇6
教学内容:
北师大版教学六年级《圆柱的体积》
教学目标:
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:
理解圆柱体积计算公式的推导过程。
教具准备:
圆柱体积演示教具。
教学过程:
一、旧知铺垫
1、谈话引入
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)
这节课我们就来学习圆柱的体积。
二、自主探究,解决问题
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的.计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积高)
用字母表示:(板书:V=Sh)
三、巩固新知
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成试一试
3、跳一跳:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?
五、布置作业
练一练1-5题。