初一数学教学教案

时间:2024-10-22 14:01:51 教案 我要投稿
  • 相关推荐

初一数学教学教案

  作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!下面是小编为大家收集的初一数学教学教案,欢迎阅读,希望大家能够喜欢。

初一数学教学教案

初一数学教学教案1

  一、教学目标

  1.会用正多边形无缝隙、不重叠地覆盖平面。

  2.让学生在应用已有的数学知识和能力,探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用意识,获得各种体验。

  二、教学活动的建议

  探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。

  建议本节教学活动采用以下形式:

  (1)学生自己提出研究课题;

  (2)学生自己设计制订活动方案;

  (3)操作实践;

  (4)回顾和总结。

  教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。

  三、关于镶嵌

  1.1.镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的.原因:

  (1)如果用“数学的眼光”观察事物,那么用正方形的地砖铺地,就是“正方形”这种几何图形可以无缝隙、不重叠地拼合。

  (2)“几何“中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。

  2.2.各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。

  (1)用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌。

  (2)用两种或三种正多边形镶嵌,详见163~166页内容。

  (3)用一种任意的凸多边形镶嵌。

  从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)

初一数学教学教案2

  课题:一元一次方程的解法(去分母)

  课时:第四课时

  教学内容:P197-198.例5、例6

  教学目的:掌握去分母的方法,解含有分母的一元一次方程

  教学重点:去分母的'方法及其根据

  教学难点及其解决方法:

  1.去分母时,正确解决方程中不含分母的项。

  解决方法:注意分析去分母的根据,并在练习时加以强调。

  2.正确理解分数线的作用。

  解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

  教法:启发式,讲练结合。

  教学过程:

  复习巩固上几节所学的一元一次方程解法

  解方程:(学生练)5y-1=14①

  解:移项,得5y=14+1

  同并同类项,得5y=15

  系数化为1,得y=3

  (口算检验)

  二、新课教授

  1.引入有分母的一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

  思考:

  (1)此方程如何求解?

  若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

  (2)能否把它还原为原来的方程①?

  若能这样,就能避免在计算过程中出现通分过程。

  (3)如何还原呢?(方程两边都乘以6)

  (4)此过程的根据是什么?(等式基本性质2)

  (5)其目的是什么?(消去分母,故此步骤称“去分母”)

  解题过程:解:去分母,得5y-1=14(板书演示约分过程)

  (以下步骤,略)

  2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

  其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

  3.练习:《掌握代数》P87.2(1)

初一数学教学教案3

  一、情况分析

  1、学生情况:

  从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习习惯较差,跟不上教学进度的多。受应试教育观念的影响,师生习惯于接受性学习,自主、合作、探究的风气尚未形成。作业习惯抄袭,勤思好问的少。从抽查的情况看,学生对要理解记忆的知识掌握得不够好,读题、理解题意的能力弱,综合分析题目信息,确定解题思路、方法的经验不足,答题书写随意,格式不规范。综合评估本班教学成绩明显低于去年班级。为此新学期的'数学教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,尽量缩小与去年学生差距。

  2、教材情况:

  本学期是本年级学生初中学习阶段的第二学期。新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、实数。现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。

  二、目标要求

  本学期的数学教学要从学生的实际问题出发,积极引导学生“观察”、“思考”、“探究”、“讨论”、“归纳”数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期末考试中力争生均分70分左右,合格率60%以上,并将低分率控制到10%以下,综合成绩镇前五。

  三、教学措施

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

  2、把握学生思想动态,及时与学生沟通,搞好师生关系。

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

  4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。

  6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。

  7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长。

  特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

  (1)课前预习习惯;

  (2)积极思考,主动发言习惯;

  (3)自主作业习惯;

  (4)课后复习习惯。

  8、改进阶段考试形式,改进评价方法,注重学习过程的评价,対基础知识技能“推迟判断”,让学生有再次考试的机会,成功的喜悦,重视学生发现问题、解决问题的能力的评价。

  四、教学进度

  三月份:(1—5周,约30课时)相交线与平行线、平面直角坐标系、三角形结束新课。并进行阶段测试。结束新课月考。

  四月份:(6—10周,约25课时)二元一次方程组结束新课。并进行阶段测试。期中考试初定在5月1日前后。

  五月份:(11—15周,约25课时)不等式与不等式组结束新课。并进行阶段测试。结束新课月考,初定在6月2日前后。

  六月份:(16—19周,约20课时)实数结束新课,进入综合复习,并进行阶段测试。结束新课测试,初定在1月8日前后

  七月份:(20—21周,约10课时)自主复习与答疑,考前指导。

初一数学教学教案4

  教学目的

  1。使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

  2。通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

  重点、难点

  判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的.设计是教学难点。

  教学过程

  一、知识回顾

  问题1:轴对称图形的定义是什么?

  它是判断图形是否是轴对称图形的依据。

  问题2:是否会画轴对称图形的对称轴?

  找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

  问题3:轴对称图形对称点的连线与对称轴有什么关系?

  轴对称图形对称点的连线被对称轴垂直平分。

  问题4:线段垂直平分线、角平分线具有什么性质?

  线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

  问题5:等腰三角形有什么性质?

  等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。

  问题6:如何判断三角形是等腰三角形?等边三角形?

  如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。

  二、例题

  1。下列图案是轴对称图形的有()

  A。1个D。2个C。3个D。4个

  2。如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么

  (1)∠DEF与∠DFE相等吗?为什么?

  (2)OE与OF相等吗?为什么?

  三、巩固练习

  如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″。求△BCD的周长和∠DBC度数。

  四、课堂小结

  通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,

《初一数学教学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【初一数学教学教案】相关文章:

初一数学教学反思06-16

初一数学教案11-10

初一数学教学反思优秀03-28

初一数学教学计划01-15

初一数学下教学反思06-10

初一数学教学反思范文11-16

数学教学教案优秀03-14

初一数学教案20篇04-19

初一数学教案(15篇)02-07

数学教学教案反思优秀02-05

初一数学教学教案

  作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!下面是小编为大家收集的初一数学教学教案,欢迎阅读,希望大家能够喜欢。

初一数学教学教案

初一数学教学教案1

  一、教学目标

  1.会用正多边形无缝隙、不重叠地覆盖平面。

  2.让学生在应用已有的数学知识和能力,探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用意识,获得各种体验。

  二、教学活动的建议

  探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。

  建议本节教学活动采用以下形式:

  (1)学生自己提出研究课题;

  (2)学生自己设计制订活动方案;

  (3)操作实践;

  (4)回顾和总结。

  教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。

  三、关于镶嵌

  1.1.镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的.原因:

  (1)如果用“数学的眼光”观察事物,那么用正方形的地砖铺地,就是“正方形”这种几何图形可以无缝隙、不重叠地拼合。

  (2)“几何“中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。

  2.2.各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。

  (1)用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌。

  (2)用两种或三种正多边形镶嵌,详见163~166页内容。

  (3)用一种任意的凸多边形镶嵌。

  从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)

初一数学教学教案2

  课题:一元一次方程的解法(去分母)

  课时:第四课时

  教学内容:P197-198.例5、例6

  教学目的:掌握去分母的方法,解含有分母的一元一次方程

  教学重点:去分母的'方法及其根据

  教学难点及其解决方法:

  1.去分母时,正确解决方程中不含分母的项。

  解决方法:注意分析去分母的根据,并在练习时加以强调。

  2.正确理解分数线的作用。

  解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

  教法:启发式,讲练结合。

  教学过程:

  复习巩固上几节所学的一元一次方程解法

  解方程:(学生练)5y-1=14①

  解:移项,得5y=14+1

  同并同类项,得5y=15

  系数化为1,得y=3

  (口算检验)

  二、新课教授

  1.引入有分母的一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

  思考:

  (1)此方程如何求解?

  若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

  (2)能否把它还原为原来的方程①?

  若能这样,就能避免在计算过程中出现通分过程。

  (3)如何还原呢?(方程两边都乘以6)

  (4)此过程的根据是什么?(等式基本性质2)

  (5)其目的是什么?(消去分母,故此步骤称“去分母”)

  解题过程:解:去分母,得5y-1=14(板书演示约分过程)

  (以下步骤,略)

  2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

  其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

  3.练习:《掌握代数》P87.2(1)

初一数学教学教案3

  一、情况分析

  1、学生情况:

  从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习习惯较差,跟不上教学进度的多。受应试教育观念的影响,师生习惯于接受性学习,自主、合作、探究的风气尚未形成。作业习惯抄袭,勤思好问的少。从抽查的情况看,学生对要理解记忆的知识掌握得不够好,读题、理解题意的能力弱,综合分析题目信息,确定解题思路、方法的经验不足,答题书写随意,格式不规范。综合评估本班教学成绩明显低于去年班级。为此新学期的'数学教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,尽量缩小与去年学生差距。

  2、教材情况:

  本学期是本年级学生初中学习阶段的第二学期。新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、实数。现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。

  二、目标要求

  本学期的数学教学要从学生的实际问题出发,积极引导学生“观察”、“思考”、“探究”、“讨论”、“归纳”数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期末考试中力争生均分70分左右,合格率60%以上,并将低分率控制到10%以下,综合成绩镇前五。

  三、教学措施

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

  2、把握学生思想动态,及时与学生沟通,搞好师生关系。

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

  4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。

  6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。

  7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长。

  特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

  (1)课前预习习惯;

  (2)积极思考,主动发言习惯;

  (3)自主作业习惯;

  (4)课后复习习惯。

  8、改进阶段考试形式,改进评价方法,注重学习过程的评价,対基础知识技能“推迟判断”,让学生有再次考试的机会,成功的喜悦,重视学生发现问题、解决问题的能力的评价。

  四、教学进度

  三月份:(1—5周,约30课时)相交线与平行线、平面直角坐标系、三角形结束新课。并进行阶段测试。结束新课月考。

  四月份:(6—10周,约25课时)二元一次方程组结束新课。并进行阶段测试。期中考试初定在5月1日前后。

  五月份:(11—15周,约25课时)不等式与不等式组结束新课。并进行阶段测试。结束新课月考,初定在6月2日前后。

  六月份:(16—19周,约20课时)实数结束新课,进入综合复习,并进行阶段测试。结束新课测试,初定在1月8日前后

  七月份:(20—21周,约10课时)自主复习与答疑,考前指导。

初一数学教学教案4

  教学目的

  1。使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

  2。通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

  重点、难点

  判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的.设计是教学难点。

  教学过程

  一、知识回顾

  问题1:轴对称图形的定义是什么?

  它是判断图形是否是轴对称图形的依据。

  问题2:是否会画轴对称图形的对称轴?

  找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

  问题3:轴对称图形对称点的连线与对称轴有什么关系?

  轴对称图形对称点的连线被对称轴垂直平分。

  问题4:线段垂直平分线、角平分线具有什么性质?

  线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

  问题5:等腰三角形有什么性质?

  等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。

  问题6:如何判断三角形是等腰三角形?等边三角形?

  如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。

  二、例题

  1。下列图案是轴对称图形的有()

  A。1个D。2个C。3个D。4个

  2。如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么

  (1)∠DEF与∠DFE相等吗?为什么?

  (2)OE与OF相等吗?为什么?

  三、巩固练习

  如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″。求△BCD的周长和∠DBC度数。

  四、课堂小结

  通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,