合并同类项优秀教案

时间:2024-08-30 07:15:22 教案 我要投稿
  • 相关推荐

合并同类项优秀教案

  作为一位无私奉献的人民教师,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?下面是小编帮大家整理的合并同类项优秀教案,欢迎阅读,希望大家能够喜欢。

合并同类项优秀教案

合并同类项优秀教案1

  学习方式:

  从具体问题情景中探索体会合并同类项的含义。

  逆用乘法分配律探求合并同类项法则。

  通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

  教学目标:

  1、在具体情境中理解、掌握同类项的定义;

  2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

  3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

  4、通过“合并同类项”的学习,继续培养学生的运算能力。

  教学的重点、难点和疑点

  1、重点:同类项的概念,合并同类项的法则。

  2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

  3、疑点:同类项与同次项的区别。

  教具准备

  投影仪(电脑)、自制胶片

  教学过程:

  提出问题

  创设情景 (出示投影)

  如图的长方形由两个小长方形组成,求这个长方形的面积。

  ①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

  (8+5)n

  ②接着引导学生写出等式:

  8n+5n=(8+5)n=13n

  启发学生观察上式是怎样的一种变化;

  它类似于我们前面学过的什么运算律

  为什么8n与5n可以合并成一项(组织学生充分

  讨论,从而引出同类项的概念)

  ③同类项的概念

  举出一些具有代表性的同类项的实际例子。

  如:-7a2b , 2a2b ;

  8n , 5n ;

  3x2, -x2

  引导学生观察上面给出的几组代数式具有什么共同特点:

  ①所含的字母相同

  ②相同字母的指数也相同

  教师顺势提出同类项的概念

  强调同类项必须满足以上两条

  ④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

  讨论交流

  (反例巩固) 出示问题;

  x与y,

  a2b与ab2,

  -3pa与3pa

  abc与ac,

  a2和a3 是不是同类项

  (给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

  其中:a2b与ab2可让学生充分讨论交流。

  (教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

  (引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

  紧扣定义

  加以判别

  例1 根据乘法分配律合并同类项

  (1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

  (教师强调乘法分配律的逆运用)

  (学生板书完毕后,教师引导学生观察合并的`前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

  由此引导学生总结出合并同类项的法则:

  在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

  学生思考

  解答(找二生板演其他学生独立写出过程)

  总结法则

  可根据情况适当复习关于乘法分配律的有关知识

  通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

  应用法则

  例2,合 并同类项

  ①3a+2b-5a-b

  ②-4ab+8-2b2-9ab-8

  给学生留有足够的独立的思考时间

  找二生到黑板上板演。

  学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

  强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

  教师不给任何提示

  学生在练习本上完成,然后同桌同学互相交换评判。

  (二生到黑板上板演)

  变式

  应用 补充例题

  例3,求代数式的值

  ①2x2-5x+x2+4x-3 x2-2 其中x=

  ②-3 x2+5x-0.5 x2+x-1 其中x=2

  出示 例题后,教师不要给任何提示,先让学生独立思考。

  部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

  问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

  独立完成

  分析比较

  寻求简便方法

  随堂

  练习 1、合并同类项

  ①3y+ y=__________

  ②3b-3a2+1+a3-2b=____ _______

  ③2y+6y+2xy-5=_____________

  2、求代数式的值

  8 p2-7q+6q-7p2-7

  其中p=3 q=3

  练习交流合作

  教师可根据情况适当补充

  小结 今天你学会了哪些知识?获得了哪些方法,

  有什么体会? 自己总结

  作业 教材课后习题

合并同类项优秀教案2

  教学目标

  1、会利用合并同类项的方法解一元一次方程;(重点)

  2、通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用。(难点)

  教学过程

 一、情境导入

  1、等式的基本性质有哪些?

  2、解方程:(1)x—9=8;(2)3x+1=4;

  3、下列各题中的两个项是不是同类项?

  (1)3xy与—3xy;(2)0、2ab与0、2ab;

  (3)2abc与9bc;(4)3mn与—nm;

  (5)4xyz与4xyz;(6)6与x;

  4、能把上题中的同类项合并成一项吗?如何合并?

  5、合并同类项的法则是什么?依据是什么?

  二、合作探究

  探究点一:利用合并同类项解简单的一元一次方程

  例1解下列方程:

  (1)9x—5x=8;

  (2)4x—6x—x=15、

  解析:先将方程左边的同类项合并,再把未知数的系数化为1。

  解:(1)合并同类项,得4x=8、

  系数化为1,得x=2、

  (2)合并同类项,得—3x=15、

  系数化为1,得x=—5、

  方法总结:解方程的'实质就是利用等式的性质把方程变形为x=a的形式。

  探究点二:根据“总量=各部分量的和”列方程解决问题

  例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

  解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程。

  解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个)、

  答:黑色皮块有12个,白色皮块有20个。

  方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解。此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来。

  三、板书设计

  1、用合并同类项的方法解简单的一元一次方程。

  解方程的步骤:

  (1)合并同类项;

  (2)系数化为1(等式的基本性质2)、

  2、找等量关系列一元一次方程。

  列方程解应用题的步骤:

  (1)设未知数;

  (2)分析题意找出等量关系;

  (3)根据等量关系列方程;

  (4)解方程并作答。

  教学反思

  本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫。教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯。

【合并同类项优秀教案】相关文章:

《合并同类项》教案11-09

数学合并同类项教学反思(精选27篇)10-26

合并协议书03-21

ps图层合并后要怎么分开11-03

公司合并协议书12-01

公司合并协议书02-21

公司合并协议书(3篇)02-04

公司合并协议书3篇01-29

优秀的教案11-10