四年级上册《积的变化规律》教案

时间:2023-05-15 18:37:57 教案 我要投稿

精选四年级上册《积的变化规律》教案3篇

  在教学工作者开展教学活动前,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?以下是小编收集整理的四年级上册《积的变化规律》教案3篇,仅供参考,希望能够帮助到大家。

精选四年级上册《积的变化规律》教案3篇

四年级上册《积的变化规律》教案 篇1

  教学内容:积的变化规律《人教版四年级上册教材P51》

  教学目标:1、经过探索的过程,理解和掌握积的变化规律

  2、会运用积的变化规律写出有规律的算式的得数。

  教学重点:理解两数相乘时,积的变化随其中一个因数的变化而变化

  教学难点:自主思考探究、归纳出积的变化规律

  教 具:多媒体设备,速塑纸

  教学过程:如下表

  教学过程

  教师活动

  学生活动

  教学说明

  时间设计

  一、复习旧知、提出思考

  回顾总结一位、两位、三位数与一位、两位数的乘法都是:因数×因数=积。那么同学们有没有想过,如果其中一个因数改变了,那么它的积会改变吗?又是怎么变?

  跟随老师思路回忆 、思考。

  通过回顾旧知识,培养学生总结、思考和发现规律的能力

  2min

  二、探究得新知

  一、PPT展示下列算式,让学生自主思考几个算式的规律

  1、(1)6×2=

  (2)6×20=

  (3)6×200=

  从(1)到(2),一个因数(不变),另一个因数(乘10),积就(乘10)

  从(2)到(3),一个因数(不变),另一个因数(乘10),积就(乘10)

  从(1)到(3),一个因数(不变),另一个因数(乘100),积就(乘100)

  发现:两数相乘,一个因数不变另一个因数乘几,积就乘几。

  先口算,再让学生自主观察得到发现规律(下题同上)

  2、(1)20×4=

  (2)10×4=

  (3) 5×4=

  从(1)到(2),一个因数(不变),另一个因数(除以2),积就(除以2)

  从(2)到(3),一个因数(不变),另一个因数(除以2),积就(除以2)

  从(1)到(3),一个因数(不变),另一个因数(除以4),积就(除以4)

  发现:两数相乘,一个因数不变另一个因数除以几,积就除以几。

  二、带领学生对今天的发现进行验证

  先用今天的规律填空,再列竖式验算。

  (1)26×24= (2)17×6=

  26×12= 17×12=

  26×6= 17×24=

  跟随老师的思路,口算简单的算式,并认真观察发现积的变化规律。并跟着老师的要求对规律进行验证。

  通过自主口算和发现,学生能更深入地理解积的变化规律。这是这次教学的.关键环节。另外,让学生验证规律,可以让学生清楚运用规律所得的结果和列竖式笔算的结果是一样的。并让学生感受到,使用规律解决更简单方便

  15min

  三、巩固训练、加强理解

  PPT演示例题做题要求

  25 × 4 = 100

  不变 ×2 ×2

  25 × 8 = 200

  针对练习:

  1、(基础练习)根据8×50=400,直接写出下列各题的积

  16×50=

  32×50=

  8×25=

  2、(基础练习)

  (1)两数相乘,一个因数不变,另一个因数( ),积就乘5.

  (2)两数相乘, 一个因数不变, 另一个因数缩小3倍,积就( ).(3)18×25=450,第一个因数缩小2倍,第二个因数不变,这时积是( )。

  (4)两数相乘,积是300,一个因数不变,另一个因数乘3,这时积是( )。

  3、(巩固练习)先找规律再填空

  125×4= 48×15=

  125×8= 24×15=

  125×12= 12×15=

  125×16= 6×15=

  125×28= 18×15=

  4、综合练习

  下面这块长方形绿地的宽要增加到24米,长不变.扩大后的绿地面积是多少?

  5、知识拓展

  两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,积不变。

  学生要认真听课,用心思考问题,在未给出解题步骤前自行探讨解题过程,再根据与教师的解题步骤进行对比,加深理解

  通过做题,得出做题步骤规律,总结解题经验,巩固新知识,从而达到随学随记得效果

  20min

  四、归纳小结、布置作业

  归纳本节课学习的内容,根据学习的内容以及学生的掌握情况,布置相关课后习题

  学生课后认真完成作业

  加深理解,巩固记忆

四年级上册《积的变化规律》教案 篇2

  一、教学目标

  (一)知识与技能

  进一步认识单价、速度的含义,会用“所花的钱/数量”表示单价,“所走的路程/时间单位”表示速度。

  (二)过程与方法

  经历从实际问题中抽象出单价、数量和总价,速度、时间和路程之间的关系,并能应用这种关系解决问题。获得解决问题的策略,提升解决问题的能力。

  (三)情感态度和价值观

  初步解生活中常见的数量及数量关系,树立生活中处处有数学的思想。

  二、教学重难点

  教学重点:引导学生在解决问题过程中理解“单价、速度”的概念,理解并应用三量之间的数量关系。

  教学难点:用术语表达、理解“单价、速度”的概念,掌握用符合单位表示“单价、速度”的方法。

  三、教学准备

  课件

  四、教学过程

  (一)具体情境导入

  1.出示教材52页例4、53页例5

  师:在前面的学习中,我们经常会见到一些数量关系。

  学生独立解答

  2.引入课题:

  看来大家对我们学习的知识已经基本掌握了,今天我们就来总结这两种常见的数量关系。(板书课题)

  【设计意图】学生已经会解决实际中关于单价、数量、总价,速度、时间、路程的问题,通过解决例4、5,唤起学生对此类问题的回顾,激发起学生探究知识的欲望。

  (二)探究新知

  1.认识单价、数量、总价,概括“单价×数量=总价”

  (1)

  师:这两个问题有什么共同点?

  生1:都是已知每件商品的价钱。

  生2:还知道买了多少件商品,算共花的钱数。

  (2)出示发票:

  师:你能从这张发票中看出光明小学的购物情况吗?

  (学生分别从数量栏、单价栏、金额栏、货物名称栏了解购物结果。)

  ①认识理解“单价”。

  师:看来发票里包含了许多的数学知识。你知道发票中的“单价”是什么意思吗?(板书:单价)

  师:是的,每件商品的价格就是它的单价,你还知道哪些物品的单价?(学生介绍学习用品类、服饰类、食品类的物品单价)

  师:发票中的20xx元表示什么意思?(板书:总价)

  ②说一说,算一算。

  师:出示问题:

  橙汁每瓶4元,一箱12瓶共多少元?

  每箱橙汁40元,200元可以买这样的几箱?

  200元可以买5箱橙汁,每箱橙汁多少元?

  已知( )和( ),求( )。数量关系式为( ),算式( )。

  学生独立练习

  生汇报、交流。

  生:讨论并发现验证:单价×数量=总价,总价÷单价=数量,总价÷数量=单价。补充完整板书。

  【设计意图】从学生已有的知识和经验出发,通过学生自己质疑、释疑认识单价、数量、总价,并初步感知单价、数量、总价之间的关系。积累有关单价、数量、总价丰富感知。

  2.认识速度、时间、路程,概括“速度×时间=路程

  (1)

  师:这两个问题有什么共同点?

  生1:都是已知每小时或每分钟行的路。

  生2:还知道行了几小时或几分钟,算共行了多少千米

  (2)联系实际,认识速度

  师:生活中这样的例子很多,下面我们一起来感受一下物体的速度。(课件出示)

  蜗牛爬行的速度大约是8米/时。

  人步行的'速度大约为4千米/时。

  声音传播的速度大约为340米/秒。

  光传播的速度大约为30万千米/秒。

  师:我们把这样,每小时或每分行的路程叫做速度。

  人步行的速度是4千米/时,(板书:4千米/时)观察表示速度的单位,是由哪些我们学过的单位组成的?

  生:速度的单位是由路程单位和时间单位组成的。

  师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作4千米每时。

  你知道4千米/时表示什么吗?

  生:24千米/时表示人1小时大约走4千米。

  师:你能像这样写出并读出蜗牛、声音传播、光传播的速度吗?

  【设计意图】出示生活中常见的速度,拓展学生对日常生活中速度的认识,通过实例和交流,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养了学生收集、处理信息的能力和获取知识的能力。并且加深了学生运用所学知识解决生活中的问题的意识。

  (3)经历公式形成的过程。

  师:那么怎样求速度?

  生:路程÷时间=速度

  师:请写出下面各物体的速度

  ①一列火车2时行驶180千米,这列火车的速度是_________

  ②自行车3分钟行驶600米,这辆自行车的速度是_________

  ③一名运动员8秒跑了80米,这名运动员的速度是________

  生:这列火车的速度是90千米/时,这辆自行车的速度是200米/分,这名运动员的速度是10米/秒。

  (4)理解单位时间,理解速度的意义。

  师:观察这三组速度,他们都是多长时间行驶的路程?

  生:他们都是一时、一分、一秒行驶的路程。

  师:对,我们把这样的一时、一分、一秒都称为单位时间。你现在能来试着说一说什么是速度吗?

  生:在单位时间里行驶的路程就叫速度。

  【设计意图】路程、时间与速度这三个相关联的量,学生原来只能模糊地感知,不能清晰地表达,所以,我通过提问:速度单位与我们学过的单位有什么不同?剖析出速度的单位是由长度单位和时间单位共同组成的,帮助学生进一步理解速度的含义,通过观察和比较几个速度单位的相同和不同之处,既形象地帮助学生建立概念,又理解了速度的概念,知道速度是单位时间内所行驶的长度,这样就架构起行程问题中三个数量之间联系的桥梁。

  (5)经历公式形成的过程。

  师:解决下面的问题。

  甲乙两地有240千米,一辆汽车的行驶速度为60千米/时,从甲地到乙地行驶了4小时。

  ①60×4表示什么?

  ②240÷4表示什么?

  ③240÷60表示什么?

  已知( )和( ),求( )。数量关系式为( )。

  生2:这两道题都是知道了速度和时间,求路程。

  师:怎样求路程?

  生:速度×时间=路程

  师:猜测一下怎样求时间?为什么这样猜?

  生:路程÷速度=时间,我认为根据速度×时间=路程,知道了积和一个因数,求另一个因数用除法计算。

  师:同学们猜测得到底对不对,想来验证一下吗?计算第(2)、(3)题,说说你有什么发现?

  生:我发现了这两道题都是已知路程和速度,求时间,用路程÷速度=时间,证明我们的猜测是正确的。

  【设计意图】在学生充分理解路程、时间与速度这三个量的基础上,提出问题:这些量之间的关系是什么?根据学生的回答,让他们经历猜测和验证的过程。在这个教学重点环节里,我留给学生充分的时间探究,通过小组讨论总结、归纳数量关系,围绕“总结---归纳”二个环节进行学法指导,帮助学生深刻领会路程、时间与速度之间的密切联系。

  (三)实际运用

  1.他会超速吗?带有这个标志的路共长140千米,张叔叔驾车想花2小时开完这一段路。

  师:你怎么理解限速60千米/时?你想对张叔叔说些什么?

  2.客车的平均速度是80千米/时,它行7小时能否到上海?你能想出几种方法来解决?

  生1:比路程。

  生2:比速度。

  生3:比时间。

  3.小丽去文具店买文具,不小心把购物发票弄脏了,你能帮她算出笔记本每本多少元吗?

  学生独立解答。

  【设计意图】通过解决实际问题的练习,鼓励学生联系已有知识,寻求不同的解决方法,发展学生的数学思维能力。

  (四)回顾梳理

  本堂课我们学习了什么知识?你有什么收获?

  【设计意图】通过师生共同梳理,让学生对两种常见的数量关系有系统的认识。

四年级上册《积的变化规律》教案 篇3

  教学内容:教科书第58页例4及“做一做”,练习九第1~4题。

  教学目标:

  1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  3.初步获得探索规律的一般方法和经验,发展学生的'推理能力。

  教、学具准备:多媒体课件

  教学过程:

  一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。

  1.研究问题。

  (1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。

  请学生完成下列两组计算,想一想发现了什么,并把发现写出来。

  6×2=()8×125=()

  6×20=()24×125=()

  6×200=()72×125=()

  (2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。

  请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。

  80×4=()25×160=()

  40×4=()25×40=()

  20×4=()25×10=()

  2.概括规律

  (1)分层概括发现的规律。

  ①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。

  ②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”

  ③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”

  (2)整体概括规律。

  问:“谁能用一句话将发现的两条规律概括为一条?”

  引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

  3.验证规律。

  (1)先用积的变化规律填空,再用笔算或计算器验算。

  26×48=124817×12=204

  26×24=()17×24=()

  26×12=()17×36=()

  (2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。

  4.应用规律。

  完成例4下面的“做一做”和练习九第1~4题。

  二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)

  (1)独立思考,发现规律。

  ①请学生完成下列计算,并在组内述说自己发现的规律。

  18×24=105×45=

  (18÷2)×(24×2)=(105×3)×(45÷3)=

  (18×2)×(24÷2)=(105÷5)×(45×5)=

  ②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。

  (2)应用规律解决问题。

  ①在○中填上运算符号,在□中填上数。

  24×75=180036×104=3744

  (24○6)×(75×6)=1800(36×4)×(104○4)=3744

  (24○3)×(75○□)=1800(36○□)×(104○□)=3744

  ②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?

【四年级上册《积的变化规律》教案】相关文章:

《积的变化规律》教学教案02-10

四年级上册《积的变化规律》教案3篇05-15

四年级上册《积的变化规律》教案4篇05-15

《积的变化规律》教学反思11-24

积的变化规律教学反思11-11

积的变化规律教学反思优秀03-15

四上积的变化规律教学反思(精选19篇)03-29

《商的变化规律》教学反思06-23

《找规律》教案11-15