二次根式教案

时间:2023-05-09 14:17:33 教案 我要投稿

二次根式教案范文锦集10篇

  作为一名优秀的教育工作者,总归要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?以下是小编精心整理的二次根式教案10篇,希望能够帮助到大家。

二次根式教案范文锦集10篇

二次根式教案 篇1

  一、内容和内容解析

  1.内容

  二次根式的概念.

  2.内容解析

  本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.

  教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.

  本节课的教学重点是:了解二次根式的概念;

  二、目标和目标解析

  1.教学目标

  (1)体会研究二次根式是实际的需要.

  (2)了解二次根式的概念.

  2. 教学目标解析

  (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

  (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

  三、教学问题诊断分析

  对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.

  本节课的教学难点为:理解二次根式的双重非负性.

  四、教学过程设计

  1.创设情境,提出问题

  问题1你能用带有根号的的式子填空吗?

  (1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

  (2)一个长方形围栏,长是宽的'2 倍,面积为130?,则它的宽为______.

  (3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

  师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.

  【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

  问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

  师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

  【设计意图】为概括二次根式的概念作铺垫.

  2.抽象概括,形成概念

  问题3 你能用一个式子表示一个非负数的算术平方根吗?

  师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

  【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

  追问:在二次根式的概念中,为什么要强调“a≥0”?

  师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

  【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

  3.辨析概念,应用巩固

  例1 当 时怎样的实数时, 在实数范围内有意义?

  师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

  例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

  师生活动:先让学生独立思考,再追问.

  【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

  问题4 你能比较 与0的大小吗?

  师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

  【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.

  4.综合运用,巩固提高

  练习1 完成教科书第3页的练习.

  练习2 当x 是什么实数时,下列各式有意义.

  (1) ;(2) ;(3) ;(4) .

  【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.

  5.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

  (1)本节课你学到了哪一类新的式子?

  (2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

  (3)二次根式与算术平方根有什么关系?

  师生活动:教师引导,学生小结.

  【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.

  6.布置作业:

  教科书习题16.1第1,3,5, 7,10题.

  五、目标检测设计

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

  2. 当 时,二次根式 无意义.

  【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

  3.当 时,二次根式 有最小值,其最小值是 .

  【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

  4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

  【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

二次根式教案 篇2

  1.教学目标

  (1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;

  (2)会用公式化简二次根式.

  2.目标解析

  (1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

  (2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.

  教学问题诊断分析

  本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.

  在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.

  本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.

  教学过程设计

  1.复习引入,探究新知

  我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.

  问题1 什么叫二次根式?二次根式有哪些性质?

  师生活动 学生回答。

  【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.

  问题2 教材第6页“探究”栏目,计算结果如何?有何规律?

  师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.

  【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.

  2.观察比较,理解法则

  问题3 简单的根式运算.

  师生活动 学生动手操作,教师检验.

  问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?

  师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.

  【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.

  3.例题示范,学会应用

  例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.

  师生活动 提问:你是怎么理解例(1)的?

  如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?

  师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.

  再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

  【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.

  例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  师生活动 学生计算,教师检验.

  (1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;

  (2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;

  (3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的.运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.

  【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.

  教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.

  4.巩固概念,学以致用

  练习:教科书第7页练习第1题. 第10页习题16.2第1题.

  【设计意图】巩固性练习,同时检验乘法法则的掌握情况.

  5.归纳小结,反思提高

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)你能说明二次根式的乘法法则是如何得出的吗?

  (2)你能说明乘法法则逆用的意义吗?

  (3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

  6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.

  五、目标检测设计

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.

  2.化简二次根式的乘除 ______________________________。

  【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.

  3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.

二次根式教案 篇3

  一、教学目标

  1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2。使学生掌握化简一个二次根式成最简二次根式的方法。

  3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1。重点:能够把所给的二次根式,化成最简二次根式。

  2。难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?

  了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1。被开方数的'因数是整数,因式是整式。

  2。被开方数中不含能开得尽方的因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2。要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1。满足什么条件的根式是最简二次根式。

  2。把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1。指出下列各式中的最简二次根式:

  2。把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  七、板书设计

二次根式教案 篇4

  一、教学目标

  1.了解二次根式的意义;

  2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3. 掌握二次根式的性质 和 ,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的`取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算:

  通过练习使学生进一步理解平方根、算术平方根的概念.

  观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

  表示的是算术平方根.

  (二)引入新课

  我们已遇到的这样的式子是我们这节课研究的内容,引出:

  新课:二次根式

  定义: 式子 叫做二次根式.

  对于 请同学们讨论论应注意的问题,引导学生总结:

  (1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1 当a为实数时,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0

  例2 x是怎样的实数时,式子 在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

  例3 当字母取何值时,下列各式为二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.

  (2)-3x0,x0,即x0时, 是二次根式.

  (3) ,且x0,x0,当x0时, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所满足的条件:

  (1) ; (2) ; (3) ; (4)

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

  (4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

  (三)小结(引导学生做出本节课学习内容小结)

  1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

  2.式子中,被开方数(式)必须大于等于零.

  (四)练习和作业

  练习:

  1.判断下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

  2.a是怎样的实数时,下列各式在实数范围内有意义?

  五、作业

  教材P.172习题11.1;A组1;B组1.

  六、板书设计

二次根式教案 篇5

  教学目标

  课标要求:学生要学会学习、自主学习,要为学生终生学习打下坚实的基础,根据教学大纲和新课标的要求,根据教材内容和学生的特点我确定了本节课的教学目标 1、了解二次根式的概念 2、了解二次根式的基本性质,经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。 3、通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。 4、学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣,并提高应用的意识。

  教学重点:二次根式的概念和基本性质

  教学难点:二次根式的基本性质的灵活运用

  教法和学法

  教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学。依据学生的年龄特点和已有的'知识基础,本节课注重加强知识间的纵向联系,,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式等,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

  教学过程

  活动一:根据学生已有知识探究二次根式的概念 1.探究二次根式概念 由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。 思考:用带有根号的式子填空,看看写出的结果有什么特点? (1)要做一个两条直角边的长分别为7cm和4cm的三角尺,斜边的长应为 cm

  (2)面积为S的正方形的边长为

  (3)要修建一个面积为6.28m2的圆形喷水池,它的半径为m(∏取3.14)

  (4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t= 学生发现所填结果都表示一个数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式子。学生表示为,此时教师启发学生回忆已学平方根的性质让学生总结出a这一条件。在此基础上总结出二次根式的概念。 2.例题评析 例1:哪些为二次根式? 练习:x取何值时下列各式有意义,通过4小题的训练,让学生体会二次根式概念的初步应用。加深对二次根式定义的理解,并注重新旧知识间的联系,用转化的思想解决问题,总结出解题规律:求未知数的取值范围即转化为①被开方数大于等于0②分母不为0列不等式或不等式组解决问题。

  活动二:探究二次根式的性质1 1.探究(a)与0的关系 学生分类讨论探究出:(a)是一个非负数,此时归纳出二次根式的第一个性质:双重非负性。培养学生的分类讨论和概括能力。例2:,则变式:,

  活动三:探究二次根式的性质2 探究()2=a(a)由课本具体的正数和零入手来研究二次根式的第二个性质,首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现开平方运算与平方运算的关系,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。前两题学生口述教师板书,后面的两题由学生板演引导学生分析(2)(4)实质是积的乘方和分式的乘方 拓展:反之(a)如 为后面的化最简二次根式(简单的分母有理化)做好铺垫。 例4:在实数范围内分解因式

  活动四:探究二次根式的性质3 3.探究 在活动三的基础上出示课本第4页的探究: 引导学生比较活动三与活动四探究中两组题目的不同之处,活动三中的题目是对非负数先进行开平方运算,再进行平方运算;而活动四中的题目正好相反,是先进行平方运算,再进行开平方运算。再次由特殊到一般的让学生归纳出二次根式的又一个性质。培养学生观察、对比的能力和意识。 此时引导学生谈一谈对()2和的联系和区别 相同点:①都有平方和开平方运算 ②运算结果都是非负数 ③仅当a时,()2= 不同点:①从形式和运算顺序看:()2先开方后平方,先平方后开方 ②从a的取值范围看:()2(a),(a为任意数) ③从运算结果看:()2=a(a),(a为任意数

二次根式教案 篇6

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的'概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

二次根式教案 篇7

  一、教学目标

  1.理解分母有理化与除法的关系.

  2.掌握二次根式的分母有理化.

  3.通过二次根式的分母有理化,培养学生的运算能力.

  4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:分母有理化.

  2.教学难点:分母有理化的技巧.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式.

  例1 说出下列算式的.运算步骤和顺序:

  (1) (先乘除,后加减).

  (2) (有括号,先去括号;不宜先进行括号内的运算).

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题.

  【引入新课】

  化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

二次根式教案 篇8

  一、复习引入

  学生活动:请同学们完成下列各题:

  1.计算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

  整式运算中的`x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

  例1.计算:

  (1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

  (1)(+6)(3-)(2)(+)(-)

  分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、巩固练习

  课本P20练习1、2.

  四、应用拓展

  例3.已知=2-,其中a、b是实数,且a+b≠0,

  化简+,并求值.

  分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案 篇9

  一、内容和内容解析

  1.内容

  二次根式的除法法则及其逆用,最简二次根式的概念。

  2.内容解析

  二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

  基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

  二、目标和目标解析

  1.教学目标

  (1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

  (2)会进行简单的二次根式的除法运算;

  (3) 理解最简二次根式的概念.

  2.目标解析

  (1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

  (2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

  (3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

  三、教学问题诊断分析

  本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的'性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

  本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

  四、教学过程设计

  1.复习提问,探究规律

  问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

  师生活动 学生回答。

  【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

  五、目标检测设计

二次根式教案 篇10

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的`乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

【二次根式教案】相关文章:

二次根式教案11-10

二次根式的加减教案01-19

《二次根式的运算》的教案09-07

二次根式教案15篇02-16

二次根式教案(精选5篇)02-22

二次根式教案(精选11篇)04-13

二次根式教案(15篇)02-27

二次根式数学教案09-22

精选二次根式教案3篇08-04

二次根式教案汇编5篇02-03