分数乘法教案

时间:2023-04-05 14:58:35 教案 我要投稿

关于分数乘法教案集合九篇

  作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。我们应该怎么写教案呢?以下是小编为大家收集的分数乘法教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于分数乘法教案集合九篇

分数乘法教案 篇1

  教学内容:教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。

  教学目标:

  1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。

  2、使学生进一步积累解决问题的策略,增强数学应用意识。

  教学过程:

  一、复习导入

  林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?

  独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。

  如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。

  二、教学例3

  1、出示例3

  林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?

  (1)比较复习题与例3的不同。

  问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”

  (2)说说“今年的班级数比去年增加了”的含义。

  是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?

  (3)让学生在线段图上表示出今年班级的数量。

  (4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。

  板书:24+24,说说24的含义,独立解答。

  (5)(5)想一想,还可以怎样计算?

  板书:24(1+),说说(1+)的含义,独立解答。

  (6)小结:怎样解答这类应用题?

  三、巩固练习

  1、做练一练的第1题。

  先说一说可以怎样想,再独立解答。

  2、做练习十六的第5题。

  独立完成,可以先画图思考,再列式解答。

  比较两题的'解法有什么联系和区别。

  3、做练习十六的第8题。

  让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。

  比较两题的解法有什么联系和区别。

  4、做练习十六的第9题。

  先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。

  比较两题的解法有什么联系和区别。

  四、全课小结,揭示课题。

  通过这节课的学习,你有什么收获?在解题时要注意什么?

  结合学生的回答,揭题板题。

  五、课堂作业

  做练习十六的第6、7题。

分数乘法教案 篇2

  教学目标:

  1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

  2、培养学生认真审题,独立思考的学习习惯。

  3、训练学生分析、解题问题的能力。

  教学过程:

  一、书上第44页上的第12题

  1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

  从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

  2、书上第44页上的第13题

  引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

  二、说说分数的意义,并把数量关系补充完整

  (1)今年的产量比去年增产1/8。

  ×1/8=

  (2)钢笔枝数的2/5相当于圆珠笔的枝数。

  ×2/5=

  (3)花布的米数比白布长1/4。

  ×1/4=

  (4)实际每月比计划节约了1/10。

  ×1/10=

  (引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

  二、对比练习。

  1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?

  2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

  3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

  (1)分别说说题中的分数是哪两个量比较的`结果,比较时把哪个量看作单位1?

  (2)比较3题有何异相点?

  三、综合练习。

  1、一种商品原价是250元,现价是原价的4/5,现价是多少?

  2、一种商品原价是250元,后来降价了1/5,降价多少?

  3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

  (1)两天分别修了多少米?

  (2)第二天比第一天多修多少米?

  (3)还剩多少米没修?

  四、作业

  课前思考:

  潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。

  第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。

  课前思考:

  上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。

  课后反思:

  由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

  第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

  课后反思:

  通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。

  课后反思:

  今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。

  从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。

分数乘法教案 篇3

  教学内容:

  分数乘法(一)

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的'计算整数乘以分数。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算整数乘以分数

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变)并注意更正学生的错误和表扬回答问题的同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3 =,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  (学生1:3 = = ;学生2:3 = = = = )

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习

  做课本2页涂一涂,算一算,2个 的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)

分数乘法教案 篇4

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的.意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

分数乘法教案 篇5

  第一单元

  分数乘法

  第五课时

  小数乘分数

  教学内容:

  教材第8页例5,做一做,练习二1~4。

  教学目标:

  1、在解决问题的过程中学习并掌握小数乘分数的计算方法。

  2、经历小数乘分数的计算方法的探究过程。

  3、体会算法多样化的数学思想,提高计算能力。

  教学重点:

  掌握小数乘分数的计算方法。

  教学难点:

  灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

  教学过程:

  一、复习导入。

  1、计算

  交流时让学生说一说计算方法和计算过程中的约分方法。

  2、把下面的小数化成分数,分数化成小数。

  1.2()

  0.4()

  3.5()

  1.25()

  让学生说一说怎样将一个小数化成分数?

  二、探索新知

  1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。

  (1)提取题中的已知条件和所求问题

  已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。

  所求问题:松鼠欢欢的`尾巴有多长?

  (2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134

  启发观察,这个算式和我们前面学习的分数乘法有什么不同?

  (3)探讨小数乘分数的计算方法。

  提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。

  学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。

  小数化成分数: = = (分米)

  分数化成小数: =2.10.75=1.575(分米)

  3、解决问题二。

  (1)出示问题:松鼠乐乐的尾巴有多长?

  (2)学生独立解答。

  组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。

  学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?

  当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书

  小数和分母约分: (分米)

  4、观察比较,回顾思考。

  提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)

  三、巩固练习。

  1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。

  2、教材第10页练习二第2题。

  3、教材第10页练习二第3题。

分数乘法教案 篇6

  教学目标

  抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

  教学过程

  一、引入

  根据条件列出对应关系.

  1.青砖的块数比红砖多

  2.青砖的块数比红砖少

  3.红砖的块数比青砖多

  4.红砖的块数比青砖少

  上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

  二、展开

  (一)将上列各条件补充一个共同的条件和问题,出示例1.

  红砖2100块 有青砖多少块?

  1.学生独立解答;

  2.大组交流;

  3.列表归纳.

  (二)出示例2

  电视机厂今年生产电视机3600台,____________________,去年生产多少台?

  1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

  (1)相当于去年的25%

  (2)比去年少25%

  (3)比去年多25%

  (4)去年生产的`是今年的25%

  (5)去年比今年少25%

  (6)去年比今年多25%

  2.将应选择的条件填入下列各式后的括号内.

  ( )

  ( )

  ( )

  ( )

  ( )

  ( )

  3.师生共同分析

  (1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

  分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

  去年的产量□100

  今年的产量360025

  设去年生产x台,得到的式子:

  在第六个式子的括号里填(1).

  (2)按照式子找应补充的条件.

  如:

  分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

  三、巩固

  (一)根据题意列式解答:

  果园里有梨树168棵 苹果树有多少棵?

  (二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

  台机器要多少元?

  (三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

  (四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

  教案点评

  这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

分数乘法教案 篇7

  教学目标 :

  1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的乘法意义及算理。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

  2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

  3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

  二、合作探究(小组合作,解决问题)

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的`整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4. 进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

  把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

  5. 得出结果

  根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

  6. 猜想计算方法

  观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

  【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

  (二)探究几分之几乘几分之几的算理算法

  1. 尝试猜想

  请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

  2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

  3. 验证反馈

  (1)请几个采用不同验证方法的学生进行一一展示。

  (预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

  (2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

  4. 得出结论

  看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

  【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

  三、展示交流(展示交流,调拨归纳)

  简化计算过程

  根据我们所得的结论,试着解决下面的问题

  出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

  (1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

  (2)乌贼30分钟可以游多少千米?

  1. 读题,独立列式并解答。

  2. 反馈

  (1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

  (2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

  (3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

  3. 练习

  例4做一做1。

  【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

  四、拓展总结(应用拓展,盘点收获)

  1. 基础练习

  (1)先看数再计算(练习一6、7两题)

  反馈校对、纠错。

  在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

  预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

  【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

  (2)完成例3、例4做一做剩下的题

  反馈校对、纠错。

  在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

  2. 练习提升

  在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

  ○ ○ ○ ○

  反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

  (1)题1、题3主要引导学生从分数乘法的意义来理解;

  (2)题2、题4主要是对分数计算方法的巩固。

  【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

  3.拓展总结

  这节课我们学习了什么?我们是怎样得出这些结论的?

  没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

  【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数乘法教案 篇8

  教学内容:第45页例题4、5

  教学目标:

  1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

  2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  教学重点、难点:

  分数乘分数的计算法则。

  对策:

  使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  一、 复习

  1、计算下列各式

  1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=

  2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?

  二、 新授

  1、出示例题4题目和图。

  2、理解题目意思。

  3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?

  4、右边呢?

  5、你能看图用算式来表示结果吗?填在书上。组织交流。

  6、总结:求一个分数的几分之几是多少,也可以用乘法计算。

  7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?

  学生说出自己的猜想。

  验证猜想,教学例题5。

  (1)出示例题5

  (2)在图中画斜线表示计算结果,再填空。

  (3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?

  (4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  三、巩固

  1、出示 1/42/3 8/93/4

  2、学生独立完成,指名板演

  3、可能出现两种:先乘再约分 或先约分再相乘

  引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。

  4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。

  四、比较

  出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

  所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。

  五、巩固提高

  您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的.精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练

  先独立计算在书上,指名板演,再组织交流。

  2、第48页上的第1题

  读题先在图中表示出来,再列式计算。组织交流想法。

  3、第48页上的第3题

  先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?

  4、第48页上的第4题

  先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?

  六、布置作业: 练习九 2、5

  课前思考:

  教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。

  在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。

  课前思考:

  例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。

  例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。

  在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。

  课后反思:

  本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。

  在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。

  课后反思:

  反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。

  从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。

  估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。

  课后反思:

  通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。

  对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高

分数乘法教案 篇9

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的'解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

【分数乘法教案】相关文章:

分数的乘法教案01-20

分数乘法的教案11-03

分数乘法教案11-16

关于分数乘法教案模板11-25

分数乘法教案(15篇)02-02

分数乘法教案(精选15篇)02-10

分数乘法教案15篇01-22

分数乘法教案(精选10篇)07-06

【精选】分数乘法教案4篇12-29

精选分数乘法教案三篇08-08