乘法分配律教案

时间:2023-02-17 10:32:26 教案 我要投稿

乘法分配律教案

  作为一位杰出的教职工,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么应当如何写教案呢?以下是小编精心整理的乘法分配律教案,希望对大家有所帮助。

乘法分配律教案

乘法分配律教案1

  设计说明

  教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:

  1.游戏激趣,设置悬念。

  在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。

  2.观察、比较,举例验证猜想。

  在学习新知的'过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。

  3.多角度练习,强化认识和理解。

  小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。

  课前准备

  教师准备 多媒体课件

  教学过程

  ⊙游戏激趣

  1.比赛热身。

  师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。

  师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。

  (1)9×37+9×63 (2)9×(37+63)

  2.评出胜负。

  师:做完的同学请举手,汇报计算过程。

  师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?

  预设

  生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。

  师:同学们说得非常好,尤其是××,我们就先将他的这个发现命名为××猜想。

  设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。

  ⊙引导探究,发现规律

  1.课件出示例7。

  一共有多少名同学参加了这次植树活动?

  (1)需要知道哪些条件?请在情境图里找一找。(出示情境图)

  (2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)

  (3)小组讨论,尝试用不同的方法解决问题并板书。

  引导各小组汇报解题方法,并说明这样解题的理由。

  解法一 (4+2)×25

  =6×25

  =150(名)

  (4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)

  解法二 4×25+2×25

  =100+50

  =150(名)

  (4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)

  2.观察算式,探究发现。(见课堂活动卡)

  (1)小组合作,讨论探究。

  ①两道算式有什么相同点?

  ②两道算式有什么不同点?

  ③两道算式有什么联系?

乘法分配律教案2

  教材分析

  本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便运算的基础上学习的。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分知识有利于提高学生的观察能力、比较能力和概括能力。同时,乘法分配律是学生以后进行简便运算的前提和依据,对提高学生的计算能力有着重要的作用。

  学情分析

  学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算,在此基础上来学习乘法分配律应该不会觉着太难。但是学生的概括能力和归纳能力应该是一个薄弱环节。在教学的过程中本着自主探究的原则,让学生充分的观察、分析、比较、判断、举例、验证,通过大量的`感知让学生理解乘法分配律这一运算定律的意义,并在理解的基础上有效的训练,形成数学模型,丰富应用的经验,提高简便运算的能力。

  教学目标

  1. 使学生进一步体验探索规律的过程,能自主发现乘法分配律,并能用字母表示。会用乘法分配律进行一些简便运算。

  2. 经历推导、发现的过程,体验比较、分析、归纳、发现的学习方法,培养学生的分析、比较、综合概括能力。

  3.通过自主探索的学习过程,激发学生学习数学的兴趣,培养学生独立思考的良好习惯。

  教学重点和难点

  教学重点:引导学生探索乘法的分配律。

  教学难点:运用乘法分配律进行简便运算。

乘法分配律教案3

  教材分析

  乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析

  学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。

  教学目标

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  3、会用乘法分配律进行一些简便计算

  重点难点

  1、 指导探索乘法分配律。

  2、 发现并归纳乘法分配律。

  方法指导

  通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

  预设流程

  激趣导入

  (约3分钟)

  一、创设情境,提出问题:

  1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

  2、学生思考:(1)有几种搭配方案

  (2)选择你喜欢的一种方案,并算出总价。

  (学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

  自主学习

  (约7分钟)

  (一)组内研讨,确定方案

  1、组内研讨:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说,你推荐的理由。

  (3)说说你推荐的方案,需要花多少钱?你是怎么算的.?

  合作交流

  (约10分钟)

  2、汇报交流:

  师:哪一个同学想先来给老师推荐他的方案?

  师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

  分别列式解答

  师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

  师:这个等式怎么读呢?

  生尝试读等式。

  (预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

  B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

  3、研究其它方案

  由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

  教师板书:

  一套 ×4 = 4件上衣 + 4条裤子

  (225+75)×4 = 225×4 + 75×4

  (225+125) ×4 = 225×4 + 125×4

  (175+75)×4 = 175×4 + 75×4

  (175+125) ×4 = 175×4 + 125×4

  精讲点拨

  (约8分钟)

  (二)、观察比较、猜测验证

  1、观察比较

  2、提出猜想。

  师:观察上面的等式,左右两边的算式什么变了什么没变?

  你们有什么发现?

  3、举例验证。

  让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

  学生汇报,教师根据汇报板书。

  (三)、总结规律,概括模型

  1、总结规律:

  师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

  师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

  2、用字母表示:

  师:用字母如何表示乘法分配律?

  测评总结(约12分钟)

  三、巩固应用,训练提升

  1、请你根据乘法分配律填空

  (12+40)×3=()×3+()×3

  15×(40+8)=15×()+15×()

  78×20+22×20=( + )×20

  66×28+66×32+66×40=( + + ) ×40

  教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

  2、火眼金睛辨对错

  56×(19+28)=56×19+56×28

  (18+15)×26=18×15+26×15

  (11×25) ×4= 11×4+25×4

  (45-5)×14 =45 ×14 -5 ×14

  强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

  3、用乘法分配律计算下面各题。

  (40+4)×25 39×8+39×6-4×39

  4、拓展提高

  你能用乘法分配律解决这道题吗?

  86×101

  四、说一说,今天我们研究了什么?你有什么收获

  板书设计

  乘法分配律

  一套 ×4 = 4件上衣 + 4条裤子

  (225+75)×4 = 225×4 + 75×4

  (225+125) ×4 = 225×4 + 125×4

  (175+75)×4 = 175×4 + 75×4

  (175+125) ×4 = 175×4 + 125×4

  乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

乘法分配律教案4

  教学内容:

  教科书第69页例6,练习十四的第310题。

  教学目的:

  使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教具准备:

  复习中的题目写在小黑板上。

  教学过程 :

  一、复习。

  教师出示式题:

  1.(35+65)37 2.3537+6537

  3.85(174+26) 4.85174+8526

  5.(80+8)25 6.8025+825

  7.32(200+3) 8.32300+323

  根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

  这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例6。

  (1)教师出示例题,计算937+963。

  教师:这道题是要计算两个乘积的和。

  仔细看一看这道题里的两个乘法计算中的因数有什么特点?

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

  联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

  这是应用了什么运算定律?

  教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的.和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:10243。

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

  板书:10243

  =(100+2)43

  =10043+243

  =4386

  上面计算中的第二步根据是什么?(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

  三、课堂练习

  做练习十四的题目。

  1.第3题,让学生口算。

  2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

  3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

  4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

  5.提前做完的学生做第19*题。

乘法分配律教案5

  教学内容:

  探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”,“练一练”等)

  重点:指导学生探索乘法的分配律。

  难点:发现并归纳乘法分配律

  关键:指导观察分析算式的特征。

  教学目标:

  通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

  使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  会用乘法分配律进行一些简便计算。

  教具准备

  实物投影仪或挂图(课文插图)

  教学过程:

  导入谈话:

  教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。

  板书:探索与发现(三)

  今天,又有什么发现呢?让我们一起走上探索之路。

  探索交流、发现规律

  呈现课文插图(实物投影或挂图)

  教师:一共贴了多少块瓷砖?你怎么算?

  先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

  反馈交流情况。

  由小组派代表汇报交流结果(有选择地板书)。

  学生A:6×9+4×9=54+36=90(块)

  学生B:(6+4)×9=10×9=90(块)

  要求学生结合插图说明算式的意义。

  指导学生结合观察算式的特点。

  举例验证。

  让学生根据算式特征,再举一些类似的例子。

  如:(40+4)×25和40×25+4×25

  42×64+42×36和42×(64+36)

  讨论交流:

  交流学生的举例是否符合要求:

  交流不同算式的共同特点;

  还有什么发现?(简便计算)

  字母表示。

  教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

  学生先独立完成,然后小组交流。最后教师板书。

  (a+b)×c=a×c+b×c

  提示课题。

  教师在未完成的.板书中添上:乘法分配律。

  应用规律,解决问题

  课文第46页的“试一试”。

  1、(80+4)×25

  呈现题目。

  指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

  鼓励学生独自计算。

  2、34×72+34×28

  呈现题目。

  指导观察算式特点,看是否符合要求。

  简便计算过程,并得出结果。

  巩固练习

  课文第46页的“练一练”。

  第1题,简单的应用乘法分配律进行计算。

  第2题,注意指导一些算式的计算方法。

  99×11:可以看成(100-1)×11=1100-11或看成99×(10+1)=990+99

  38×29+38应该把算式看作:38×29+38×1

  第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

  第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。

  第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

  2、选用课时作业设计。

  [板书设计]

  乘法结合律

  3×(5×4)=60 15×25×4=1500

  (3×5)×4=60 15×(25×4)=1500

  乘法结合律:(a×b)×c=a×(b×c)

  教学挂图

乘法分配律教案6

  教学目标

  知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

  能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

  培养学生观察、比较、抽象、概括等能力。

  培养学生的数感和符号感。

  情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

  教学重难点

  教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

  教学难点:应用乘法分配律解决实际问题。

  教学工具

  课件

  教学过程

  (一)生活引入,感知规律

  1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

  2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

  3、爸爸和妈妈都爱我,这句话还可以怎样说?

  4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

  5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

  [策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

  (二)开放探究,建构规律

  1、情境引入

  讲本学期开学,学校要为一、二、三年级更换桌椅情况:

  (课件播放),提出问题,引发学生思考:

  (1)请仔细观察大屏幕:

  学校为一年级更换3套桌椅共需要多少钱?

  学校为二年级更换5套桌椅共需要多少钱?

  学校为三年级更换6套桌椅共需要多少钱?

  (2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

  (3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

  (4)谁愿意接着汇报?

  2、第一次发现

  (1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

  小结:每一组算式的结果相等。

  (2)我把这两个算式用等号来连接,行吗?为什么?

  板书:(50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  3、第二次发现

  (1)再观察这三组算式,还有什么发现吗?

  (2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的`猜想进行验证呢?

  (3)每人举出一个例子,写在纸上,然后请同桌帮助验证

  汇报交流:像这样的例子还能举出一些吗?举的完吗?

  4、归纳总结:

  (1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

  (2)请看大屏幕,你们的意思是这样吗?小声读读。

  (3)有什么不懂的词吗?

  5、个性化理解

  (1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

  根据学生回答教师板书:

  (□+○)×☆=□×☆+○×☆

  (甲+乙)×丙=甲×丙+乙×丙

  (a+b)×c=a×c+b×c

  (2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

  (3)对于乘法分配律用字母表示感觉怎么样?

  [策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

  (三)激活联系、应用规律。

  1、请你把相等的两个算式连线。

  (8+13)×4 41×(3+27)

  3×(21+6) 7×5 +8

  41×3 +41×27 3×21 +3×6

  7×(5+8) 8×4 +13×4

  (1)你为什么连得这么快?是计算了吗?

  (2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

  2、根据乘法分配律填空:

  (83+17)×3=□×□○□×□

  10×25+4×25=(□○□)×□

  (1)谁愿意展示一下你填写的。有不同意见吗?

  (2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

  (3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

  [策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

  3、联系旧知、同已有知识建立联系。

  谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

  现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

  [策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

  (四)课堂小结:

  今天,学习了乘法分配律,你有什么想法?

  (五)板书设计:

  乘法分配律

  (50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  ……

  (a+b)×c = a×c+b×c

乘法分配律教案7

  教学目标:

  略

  知识与技能:

  1、让学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2、使学生会用字母表示乘法分配律。

  3、能用乘法分配律进行简便计算。

  过程与方法:

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、学生在发现规律的过程中,发展比较、分析、抽象、概括的能力,增强用符号表达数学的意识,进一步体会数学与生活的联系。

  情感态度与价值观:

  1、感受数学知识之间的内在联系,培养学生发现、探究的意识。

  2、让学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  重点:

  理解乘法分配律的意义,并归纳出定律,会运用乘法分配律。

  难点:

  抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。

  教学过程:

  一、谈话导入,揭示课题。

  师:昨天,同学们通过微视频自学了什么内容?(乘法分配律)

  这节课我们就进一步深入的学习乘法分配律。

  二、交流自主学习任务单

  师:通过观看《乘法分配律》的微视频,你知道了什么?

  (乘法分配律的意义,如何理解乘法分配律)

  (一)小组交流:任务一

  1、任务一:乘法分配律的意义

  从“举例”、“意义”和“用字母表示”这3点展开交流。

  2、学生汇报:

  师:谁有不同的举例?像这样的例子可以举多少个?(无数个)

  通过举例,你有什么发现?

  (揭示乘法分配律的意义:两个数的`和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律)

  用字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  师:“分别相乘”你是怎样理解的?请结合字母表示说一说。

  (二)小组交流:任务二

  1、任务二:理解乘法分配律

  从“画图”、“乘法的意义”这2点展开交流。

  2、学生汇报:(画图理解)

  师:谁有不同的画法?(课件演示)

  仔细看图和等式,谁看懂了?说给大家听。

  1、求这个长方形的周长。

  4×2+6×2=(4+6)×2

  长方形的'周长=(长+宽)×2

  师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今天学习的乘法分配律。

  2、组合图形大长方形的面积:

  4×2+6×2=(4+6)×2

  师:计算组合图形的面积中也有乘法分配律,利用数形结合的方法来理解乘法分配律,很好。

  3、结合乘法分配律来理解多位数乘法的笔算。

  25实际上是把12分成25×12×12()+()进行计算=25×(+)

  师:同学们能联系旧知识学习新知识,真棒!只要你做一个有心人,你就会发现其实数学中有些新、旧知识是有联系的。

  4、乘法的意义理解乘法分配律。

  4×2+6×2

  表示:()个2()个2

  一共()个2

  所以:4×2+6×2=(+)×2

  三、巩固练习。

  1、下面哪些算式是正确的?正确的画“√”,错误的画“×”,并说说判断理由。

  56×(19+28)=56×19+28()

  32×(7×3)=32×7+32×3()

  64×64+36×64=(64+36)×64()

  2、脱式计算:(两种方法计算)

  (8+4)×25(8+4)×25

  师:你喜欢哪种计算方法,为什么?

  3、用简便方法计算下面各题。

  125×48 34×72+34×28

  99×38+38 73×30—3×30

  4、解决生活中的实际问题。

  这套运动服上衣65元,裤子35元。李阿姨购进了42套这种运动服,花了多少钱?(列综合算式解答)

  四、总结

  通过今天的学习你有什么收获?

乘法分配律教案8

  教学内容:

  教科书例6、例7及“做一做”,练习十四。

  (一)知识教学点

  1.使学生理解乘法分配律的意义。

  2.掌握乘法分配律的应用。

  (二)能力训练点

  通过观察、分析、比较,培养学生的分析、推理和概括能力。

  (三)德育渗进点

  通过乘法分配律的应用,激发学生的学习兴趣。

  (四)羹育渗遇点

  使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

  指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验

  (D识迁移类推,通过合作学习,学会知识。

  1.教学重点:乘法分配律的意义及应用。

  2.教学难点:乘法分配律的反应用。

  小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。

  (一)锚垫孕伏

  1.口算:(卡片)

  25× 17×4 125×24

  引导学生说一说运用了什么运算定律,这样计算有什么好处?

  2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)

  (6+4)×5 6×4+4×5

  (二)探究新知

  1.导人新课:

  前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使

  一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)

  2.教学例5:

  (1)出示例5:

  (2)引导学生观察、讨论、交流。

  (3)教师引导学生观察两种算式,发现了什么?使学生懂得:

  ①两个算式相等。

  ②两个算式可用等号连接。

  学生答,教师板书:(18+7)×6=150

  18×6+7×6二150

  (]8+7)×6二18×6+7×6 .

  (4)教师出示:20×(15+9)

  20× 15+20×9=480

  20×(15+9)二20×15+20×9

  组织学生分组讨论,使学生明确:每组中算式所表示的意义。

  反馈练习:按题目要求,请你说出一个等式。(投影出示)

  (——+——)×——=——×——+——×——

  学生答,教师填写投影。

  (通过学生的'观察、分析、实践,使学生初感乘法分配律的知识,填空题的发

  散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐

  达到水到渠成。)

  教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

  ①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘

  数和乘数的位置。)

  ②两个加数分别同一个数相乘再把两个积相加。

  ③等号左右两边两个算式相等。

  3.概括定律:

  通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生

  结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4二——×4+——×4

  (62+12)×3=——×——+——×——

  教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个

  数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学

  生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)

  5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学

  们观察我们练习的乘法结合律,在运算上有什么特点?

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加

  数分别同这个数相乘,再把两个积相加比较简便。

  6.教学例7:

  (1)出示例7:

  102×43

  =(100+2)×43

  =4300+86

  =4386

  想:把102看成(100+2),再用43分别去乘100和2,可以用口算

  用了乘法结合律。

  教师说明:熟练后第二步可以不写,画上虚线。

  (2)出示9×37+9×63

  ①组织同学讨论。

  ②组织同学阅读教科书第65页。

  ③启发学生明白了什么?

  (乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学

  生知识迁移类推,通过合作学习,能够自己学会新知。)

  (三)巩固发晨

  1.练习十四第1题。

  2.在横线上填上适当的数。

  (”(24+8)×125=一×一+一×一

  (2)25×(20+4)=25×——+25×——

  (3)45×9+55×9=(——+——)×——

  (4)8×27+73×8=8×(——+——)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相

  同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×5 24×5+24×8

  (3)20×(17+15) 20×17+20×15

  (4)(40+28)×5 40×5+28

  (5)(10×125)×8 - 10×8+125× 8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42十29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29)

  (2)与6×8—6×8相等的式子是( )

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9

  5.练习十四第4题,投影出示。

  6,分组计算练习十四第3题。

  (四)课堂小结

  ③28×42×29

  今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分

  别与一个数相乘,再把两个积相加。

  练习十四第2题

乘法分配律教案9

  教材分析

  乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的.计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析

  学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的基础,本节课注重引导,指点,会收到很好的效果。

  知识与技能:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感态度价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点和难点:

  教学重点:理解并掌握乘法的分配律。

  教学难点:乘法的分配律的推理及运用。

乘法分配律教案10

  教学目标

  1.使学生理解乘法分配律的意义.

  2.掌握乘法分配律的应用.

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力.

  教学重点

  乘法分配律的意义及应用.

  教学难点

  乘法分配律的反应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1. 口算.

  (27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

  2. 用简便方法计算.(说明根据什么简算的)

  25×63×4

  3. 师生比赛,看谁算得又对又快.

  20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).

  2.教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6 下载

  (2)引导学生观察每组的两个算式.

  (3)教师提问:从上面的例子你发现了什么规律?

  (4)学生明确:每组中的两个算式都可以用等号连接.

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的意义.

  (6)反馈练习:按题要求,请你说出一个等式.(投影出示)

  (__+__)×__=__+__×

  教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘.

  其次是等号右边两个加数分别同一个数相乘再把两个积相加.

  最后是等号左右两边的两个算式相等.

  3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

  5.教学例7:演示课件“乘法分配律”出示例7 下载

  (1)出示例7:102×43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,可以把原式改写成什么形式?

  根据学生的回答教师板书:9×37+9×63

  =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的`特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

  ③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?

  三、巩固发展 演示课件“乘法分配律”出示练习 下载

  1. 练习十四第1题.

  根据运算定律在□里填上适当的数.

  (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数.

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×8 24×5+24×8

  (3)20×(l+15) 0×17+20×15

  (4)(40+28)×5 40×5+ 28

  (5)(10×125)×8 10×8+125×8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42+29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

  (2)与a×8-b×8相等的式于是( )

  ①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

  5.练习十四第4题,投影出示.

  一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?

  四、课堂小结

  今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

  五、布置作业

  练习十四第3题.

  用简便方法计算下面各题.

  (80+8)×25 35×37+65×37

  32×(200+3) 38×29+38

乘法分配律教案11

  教学目标:

  知识与技能

  1、理解乘法分配律的意义,并能正确地描述。

  2、初步懂得运用乘法分配律进行简算。

  过程与方法

  1、让学生参与乘法分配律的归纳过程,培养学生概括、分析、推理的能力。

  2、使学生了解从特殊到一般,再由一般到特殊这种认识事物的方法。

  情感态度与价值观

  通过观察、验证、归纳等数学活动,使学生体验数学问题的探索性,感受数学思考过程的条理性。使学生感受数学和现实生活的联系,培养学生学习数学的兴趣。

  教学重难点:

  重点

  充分感知并归纳乘法分配律。

  难点

  理解乘法分配律的意义,充分感知并归纳乘法分配律。

  教学准备:

  多媒体课件。

  教学设计:

  一、创设情景,引入新课

  同学们,你们看了自然环境被破坏而出现的沙尘暴、水土流失等一些情景的图片,有什么想说的吗?

  生:1、我想大声的呼吁:请不要再滥伐树木了,不然的话沙尘暴会更厉害。

  2、请保护好我们共同的家园吧!

  3、要保护我们的家园,还要大量植树。

  师:说的太好了。要保护我们的家园就要植树造林,种植花草。同学们,你们还记得前段时间学校植树活动的情况吗?

  (多媒体展示植树的场景,并附文字:一共有25个小组参加植树活动,每组里4人负责挖坑、种树,2人负责抬水、浇树)

  二、探究新知

  1、探究乘法运算定律

  (1)发现问题,提出问题,独立解决问题

  师:同学们,你都得到了哪些数学信息?

  学生回答。

  师:根据这些信息,你能提出什么问题?

  生:一共有多少同学参加了这次植树活动?

  教师随学生的回答板书问题。

  师:请根据这些信息解决这个问题。

  学生列式计算。

  (2)交流解决问题的'方法

  生展示汇报:

  (4+2)×25 4×25+2×25

  =6×25 =100+50

  =150(人) =150(人)

  师:谁和第一位同学的算式一样?请举手。谁来说一说你们解决问题的步骤?

  生:先用加法算出每组有几人,再乘25算出一共有多少人?

  师:谁和第二位同学的算式一样?请举手。谁来说一说第二种方法解决问题的步骤?

  生:根据收集到的信息,先分别算出负责挖坑种树的人数和抬水浇树的人数,再把这两部分合起来算出一共有多少人?

  师:回答的很好。我们来看4×25和2×25分别表示什么?还有不同的想法吗?

  生:我也是先算出每组有几人?即(4+2)×25。

  师:同学们用不同的方法解决了这个问题,请大家一起回答这次植树活动的学生一共有多少人?(150人)

  2、探究乘法分配律

  (1)探讨

  师:同学们用不同的方法解决了这个问题并且计算结果相同,那么,这两个算式之间有什么关系?

  出示:(4+2)×25 4×25+2×25

  生:两个算式的结果相等,在这两个算式中间可以用等号连接。

  师:谁能用自己的语言来描述这个等式。

  生1:4加2的和乘25等于4乘25加上2乘25。

  2:4加2的和乘25等于先把4和2分别与25相乘再相加。

  师:刚才同学们是先算出每组有几人,再算一共有多少人,算式为25×(4+2)。想一想:计算25乘4加2的和还可以怎样算呢?动手试试再把想法说给同桌听。

  师:谁来给大家说自己的想法?

  生:25乘4加2的和,可以先把25分别与4和2相乘,再相加。也就是先算25×4和25×2,再把两个积相加。即25×(4+2)=25×4+25×2

  (2)举例观察

  师:我们知道了4加2的和与25相乘,可以先把4和2与25分别相乘,再相加。请你再举出几个这样的例子,写在本子上。你怎么来说明你写的算式左右两边是相等的?

  师:谁来汇报你写的式子,师随生汇报板书。请同学们观察这两组等式以及自己写的等式,有什么发现?请先和同学交流。

  (3)交流概括

  师:谁来说说自己的发现?

  生:我发现,两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。

  师:两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。这就叫乘法分配律。

  板书课题:乘法分配律。

  师:刚才同学们写的算式都对,那我们可不可以用一个算式就能表示出所有的式子?

  生试着在练习本上写,并抽学生汇报。

  生1:a、b表示两个加数,c表示因数。a加b的和乘c等于a乘c加b乘c。即(a+b)×c=a×c+b×c。

  生2:a表示因数,b、c表示两个加数,a乘b加c的和等于a乘b加上a乘c。即a×(b+c)=a×b+a×c。

  三、巩固练习

  1、在□里填上适当的数。

  (15+20)×12=□×12+□×12

  25×(4+9)=□×4+□×9

  8×(10+5)=□×□+□×□

  75×24=75×□+75×□

  2、把左右两边相等的算式用线连接起来。

  48×12+52×12 15×18+26×18

  (15+18)×26 25×40+25×4

  25×(40+4)(48+52)×12

  14×(45-5)11×4+25×4

  (11×25)×4 14×45-14×5

乘法分配律教案12

  教案内容:

  一、课题:《乘法分配律》

  二、主要讲解的内容:

  课本第26页例7及相关练习题

  三、学习目标

  1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

  2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

  3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

  教学重难点

  借助乘法的意义理解乘法分配律的意义和内涵。

  四、教学准备:多媒体课件,电脑,网络,耳机等

  学生准备:数学书、笔、练习本、笔记本

  五、教学环节

  1、反馈家庭作业(表扬做的优秀的学生,鼓励并引导完成不太好的学生积极完成作业)

  2、复习导入

  算一算,比一比

  (10+5)×5= (8+2)×7=

  10×5+5×5= 8×7+2×7=

  课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。

  什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。

  3、新授

  还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?

  ①自主探索,独立解决问题

  你怎样解决这个问题?列式计算。【设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。】②汇报交流,明确算法 学生先自己做上传自己想法,连麦让个别学生说明。

  谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

  方法一:先算每个小组人数,再算总人数。

  (4+2)×25

  =6×25

  =150(人)

  方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。

  4×25+2×25

  =100+50

  =150(人)

  同学们用不同的.方法解决了这个问题,计算结果都是150人。

  ③观察对比,概括规律

  这两个算式之间有什么关系呢?

  (4+2)×25=4×25+2×25

  你能用自己的语言来描述这个等式吗?学生发语音

  左边是4加2的和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。

  教师适时用箭头表示出来。

  请你再举几个这样的例子吗,写在练习本上。

  拍照展示

  观察这些等式,你有什么发现?

  两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。

  ④你能结合乘法的意义理解这个规律吗?

  如:(4+2)×25=4×25+2×25

  左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。

  得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  ⑤用字母怎样表示这个规律?

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  4、练习巩固

  (1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。

  56×(19+28)=56×19+28 ( )

  32×(7×3)=32×7+32×3 ( )

  64×64+36×64=(64+36)×64 ( )

  答案:× × √

  解析:【考查目标1、2】借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。

  (2)观察下面的竖式,说一说在计算的过程中运用了什么运算定律。

  答案:运用了乘法分配律25×12=25×2+25×10

  解析:【考查目标1、2】结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。

  (3)李阿姨购进了60套这种运动服,花了多少钱?

  答案:(75+45)×60

  =120×60

  =7200(元)

  解析:【考查目标3】借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。

  5、课堂小结通过本节课的学习,你都有哪些收获?

  这节课我们一起研究了一个新的运算定律:乘法分配律

  用字母表示是(a+b)×c=a×c+b×c

  左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。

  如果反过来,等式仍然成立。

  如4×7+4×3=4×(7+3)

  利用这个定律可以使计算简便,帮助我们解决许多问题。

  6、钉钉家校本布置家庭作业,当天提交。

乘法分配律教案13

  学情分析:

  乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

  教学目标:

  1.理解并掌握乘法分配律并会用字母表示。

  2.能够运用乘法分配律进行简便计算。

  3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

  4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学过程:

  一、情景激趣,提出猜想

  1.情景

  暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

  出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

  (设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

  ①整理条件、问题

  从这段资料中你知道了那些信息?王老师遇到了哪些问题?

  ②学生列式,抽生回答: (18+23)×8, 18×8+23×8

  ③交流算式的意义

  第一个算式先算什么?再算什么?第二个算式呢?

  ④计算:(发现两个算式结果相等)

  ⑤观察、分析算式特点

  咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

  现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

  ⑥全班交流,引导学生从下面几个方面进行思考

  A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

  B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

  C.计算结果:结果相等。

  (设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

  2.提出猜想

  真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

  怎样才能知道像这样的算式都有这样的规律?

  引导学生想到用举例的方法进行验证。

  师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

  (设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

  二、举例验证,证明合理性

  1.全班举例:抽生举例,全班进行判断,看所举的'算式是否符合猜想的特征。

  2.分组举例

  两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

  3.交流:谁愿意把你举的例子和大家一起分享?

  A.这个式子符合要求吗?

  B.这些式子都有一个共同的规律,这个共同的规律是什么?

  教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

  (设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

  三、概括归纳,建立模型

  1.个性概括

  这样的式子你们还能写吗?能写完吗?

  强调这样的例子还有很多很多,是写不完的。

  你能用一个式子将所有的像这样的式子都概括出来吗?

  学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

  2.统一认识

  教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

  (a+b)×c=a×c+b×c

  给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

  3.进一步认识

  这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

  齐读式子。

  (设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

  四、巩固应用,深化认识

  1.哪些算式与72×35相等

  72×30+72×5

  72×35 72×30+5

  70×35+2×35

  70×35+2

  问:为什么相等?

  (设计意图:让学生理解乘法分配律的本质意义)

  2.你会填吗?

  (10+7)×6= ×6+ ×6

  8×(125+9)=8× +8×

  7×48+7×52= ×( + )

  问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

  (设计意图:学生进一步深刻理解乘法分配律)

  3. 7×48+7×52 7×(48+52)

  这两个式子你想选择哪个进行计算?为什么?

  如果只给你第一个式子,你会想办法让你的计算变得简便吗?

  小结:利用乘法分配律有时候可以使计算变得更简便。

  (设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

  <<<1234>>>

  4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

  ①34×72+34×28(订正时问:为什么不直接算)

  (80+4)×25

  订正时问:把(80+4)×25写成80×25+4×25依据是什么?

  如果不用好不好算?

  (80+20)×25

  问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

  教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

  ②21×25 75×99+75

  小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

  (设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

  五、全课小结

  孩子们,你们今天收获了什么?

  当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

  板书设计

  乘法分配律

  (18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

  =41×8 … … … …

  =328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

  18×8+23×8 … … … … (80+20)×25

  =144+184 个性概括:… …

  =328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

乘法分配律教案14

  教学说明:

  乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。

  一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。

  二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的`基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。

  三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。

  四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。

  教学内容:乘法分配律 P28-29 例1、例2

  教学目标:

  1、知道乘法分配律的字母表达式。

  2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。

  3、会用乘法分配律使一些计算简便。

  教学重点:理解掌握乘法分配律。

  教学难点:乘法分配律的得出及其运用。

  教学安排:

  一、 观察与思考:

  1、 出示例1:(1)看下图计算,有多少个小正方体?

  A、用实物演示引出两种算法。

  (5+3)2=16(个) 52+32=16(个)

  B、观察以上两式得到:(5+3)2=52+32

  2、 出示生活实例:

  ①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?

  引导学生用两种方法解答,然后通过计算观察得出:

  (30+20)4=200(元) 304+204=200(元)

  即:(30+20)4=304+204

  ②2角硬币和5角硬币各6枚,一共有多少钱?

  请学生同桌说说两种计算方法,然后汇报结果。

  (2+5)6=42(角) 26+56=42(角)

  即:(2+5)6=26+56

  3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?

  (前后两式是相等的、先算和再算积与先算积再算和是一样的)

  这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率

  二、 讨论与归纳:

  1、 出示问题,读读想想。

  A、 以上三组算式分别先算什么?再算什么?

  B、 它们之间有什么联系?

  先小组讨论,再派代表汇报交流。

  得出乘法分配律的正确说法。

  看书,齐读乘法分配律。

  2、 质疑。

  为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?

  (两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)

  3、 用字母表示乘法分配律。

  (A+B)C=AC+BC

  三、 练习:

  1、 根据乘法分配律填上适当的数或运算符号。

  (8+6)3=8○3○6○3

  (25+9)40= 40+ 40

  (56+ )3=56 +8

  2、 判断:

  13(4+8)=134+8 ( )

  13(4+8)=138+48 ( )

  13(4+8)=134+138 ( )

  四、 简便运算:

  1、 出示例2:(125+70)8

  请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。

  算好后同桌观察讨论:怎样算比较好?为什么?

  教师总结:用乘法分配律能使一些计算简便。

  2、 选择题:

  1624+8424的简便算法是( )。

  A、(16+24)84 B、(16+84)24 C、(1684)24

  3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)

  (25+9)8 29175+2529 48128-2848 7599+75

  4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)

  41□+5923 □□+6328

  五、 小结:

  1、 乘法分配律及字母表达式。

  2、 运用乘法分配律应注意什么?

  ①运算符号 ②分配合理

乘法分配律教案15

  教学目标

  知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。

  过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。

  情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。

  教学重难点

  教学重点

  探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

  教学难点

  乘法分配律的应用。

  教学工具

  多媒体课件

  教学过程

  一、复习导入

  二、学习乘法交换律和乘法结合律

  1、学习例5。

  (1)出示例5

  (2)学生在练习本上独立解决问题。

  (3)引导学生对解决的问题进行汇报。

  4×25=100(人)

  25×4=100(人)

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:交换两个因数的位置,积不变。这叫做乘法交换律。

  能试着用字母表示吗?

  学生汇报字母表示:a×b=b×a

  2、学习例6。

  (1)出示例6

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (25×5)×2 25×(5×2)

  =125×2 =10×25

  =250(桶) =250(桶)

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的'这种规律起个名字吗?

  板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。

  能试着用字母表示吗?

  学生汇报字母表示:(a×b) ×c=a× (b×c)

  (4)完成例6下面做一做的第一题。

  3、学习例7。

  (1)出示例7。

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

  能试着用字母表示吗?

  学生汇报字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  (4)完成例7下面做一做的第一题。

  3、学习例8。

  (1)出示例8。

  (2)收集信息,明确条件问题

  (3)学生独立思考,尝试解决问题

  (4)读懂过程,感悟不同方法

  课后小结

  今天你有什么收获?

  课后习题

  1、运用乘法运算定律,在下面的横线上填上恰当的数。

  78×85×17=78×(_____×______)

  81×(43×32)=(_____×______)×32

  (28+25)×4= ×4+ ×4

  15×24+12×15= ×( + )

  6×47+6×53= ×( + )

  (13+ )×10= ×10+7×

  2、判断对错。

  (1)39×22-39×2=39×22-2 ( )

  (2)39×22-39×2=39×(22-2) ( )

  (3)39×28+39×72=39×28+72 ( )

  (4)39×28+39×72=39×(28+72) ( )

  (5)39×12=39×(12-2) ( )

  (6)39×12=39×(10+2) ( )

  板书

  交换两个因数的位置,积不变。这叫做乘法交换律。

  先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律

【乘法分配律教案】相关文章:

小学乘法分配律教案08-27

乘法分配律教案15篇02-18

《乘法分配律》教案(通用21篇)10-20

乘法分配律教学反思08-21

《乘法分配律》教学反思09-05

乘法分配律教学反思03-23

乘法分配律教学反思优秀04-14

四年级乘法分配律教案03-31

乘法分配律教学反思(通用6篇)07-15