八年级数学下册教案

时间:2023-05-16 12:29:13 晶敏 教案 我要投稿

八年级数学下册教案(通用15篇)

  作为一名老师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么什么样的教案才是好的呢?以下是小编为大家整理的八年级数学下册教案,欢迎大家分享。

八年级数学下册教案(通用15篇)

  八年级数学下册教案 1

  一、目标要求

  1、理解掌握分式的四则混合运算的顺序。

  2、能正确熟练地进行分式的加、减、乘、除混合运算。

  二、重点难点

  重点:分式的加、减、乘、除混合运算的顺序。

  难点:分式的加、减、乘、除混合运算。

  分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的`。

  三、解题方法指导

  【例1】计算:(1)[++(+)]·;

  (2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的四则混合运算要注意运算顺序及括号的关系。

  解:(1)原式=[++]·=[++]·=·==。

  (2)原式=·÷=··=y-x。

  【例2】计算:(1)(-+)·(a3-b3);

  (2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

  (2)原式=[-]·=-=-====。

  说明:分式的加、减、乘、除混合运算注意以下几点:

  (1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

  (2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

  (3)注意括号的“添”或“去”、“变大”与“变小”。

  (4)结果要化为最简分式。

  四、激活思维训练

  ▲知识点:求分式的值

  【例】已知x+=3,求下列各式的值:

  八年级数学下册教案 2

  一、教学目标

  1、使学生理解并掌握反比例函数的概念

  2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1、重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2、难点:理解反比例函数的概念

  3、难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的'是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  四、课堂引入

  1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1、见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1、(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2、(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

  八年级数学下册教案 3

  一、教学目标

  1、使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

  2、使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

  3、使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

  4、引导学生不断小结运算方法和技巧,提高运算能力。

  二、教学重点和难点

  1、重点:分式的加减运算。

  2、难点:异分母的分式加减法运算。

  三、教学方法

  启发式、分组讨论。

  四、教学手段

  幻灯片。

  五、教学过程

  (一)引入

  1、如何计算:

  2、如何计算:

  3、若分母不同如何计算?如:

  (二)新课

  1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2、通分的依据:分式的基本性质。

  3、通分的.关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  例1通分:

  (1)解:∵最简公分母是,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  (2)解:

  例2通分:

  (1)解:∵最简公分母的是2x(x+1)(x—1),

  小结:当分母是多项式时,应先分解因式。

  (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

  练习:教材P,79中1、2、3。

  (三)课堂小结

  1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  八年级数学下册教案 4

  第一步;理解体验:

  1、复习平均数、中位数和众数定义

  2、引入课本P146R的例子

  思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。

  由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

  本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的`。

  第二步:总结提升:

  平均数、众数和中位数这三个数据代表的异同:

  平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量

  平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

  众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

  平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

  中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

  实际问题中求得的平均数,众数,中位数应带上单位.

  第三步:随堂练习:

  1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

  得分50、60、70、80、90、100、110、120

  人数 2、3、6、14、15、5、4、1

  分别求出这些学生成绩的众数、中位数和平均数.

  2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

  (1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

  (2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

  答案:1.众数90中位数85平均数84.6

  2.(1)15、15、15、众数

  (2).15、5.5、6、中位数

  第四步:课后练习:

  1、某公司的33名职工的月工资(以元为单位)如下:

  职员董事长副董事长董事总经理经理管理员职员

  人数

  工资

  (1)、求该公司职员月工资的平均数、中位数、众数?

  (2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

  (3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

  2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示

  八年级数学下册教案 5

  一、课堂引入

  1、什么叫做平行四边形?什么叫做矩形?

  2、矩形有哪些性质?

  3、矩形与平行四边形有什么共同之处?有什么不同之处?

  4、事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

  通过讨论得到矩形的判定方法。

  矩形判定方法1:对角钱相等的平行四边形是矩形。

  矩形判定方法2:有三个角是直角的'四边形是矩形。

  (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了。因为由四边形内角和可知,这时第四个角一定是直角。)

  二、例习题分析

  例1(补充)下列各句判定矩形的说法是否正确?为什么?

  (1)有一个角是直角的四边形是矩形;(×)

  (2)有四个角是直角的四边形是矩形;(√)

  (3)四个角都相等的四边形是矩形;(√)

  (4)对角线相等的四边形是矩形;(×)

  (5)对角线相等且互相垂直的四边形是矩形;(×)

  (6)对角线互相平分且相等的四边形是矩形;(√)

  (7)对角线相等,且有一个角是直角的四边形是矩形;(×)

  (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

  (9)两组对边分别平行,且对角线相等的四边形是矩形(√)

  指出:

  (l)所给四边形添加的条件不满足三个的肯定不是矩形;

  (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

  例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.

  分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

  解:∵ 四边形ABCD是平行四边形,

  ∴AO=AC,BO=BD

  ∵ AO=BO,

  ∴ AC=BD

  ∴ ABCD是矩形(对角线相等的平行四边形是矩形)

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm)

  例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H。求证:四边形EFGH是矩形。

  分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明

  八年级数学下册教案 6

  学习目标

  1、能说出约分的意义和步骤。

  2、能说出最简分式的意义。

  3、能说出分式的乘、除和乘方法则,并能用式子表示。

  4、能熟练地进行分式的乘除和乘方运算。

  5、会归纳总结整数指数幂的运算性质。

  6、能熟练地运用幂的运算性质进行计算。

  主体知识归纳

  1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。

  3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

  4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

  5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

  7、整数指数幂的运算性质可归纳如下

  (1)am·an=am+n(m、n都是整数);

  (2)(am)n=amn(m、n都是整数);

  (3)(ab)n=anbn(n是整数)、

  基础知识精讲

  1、正确理解分式约分的意义

  (1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的'分子与分母的公因式约去。

  (2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

  2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

  (1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

  (2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

  3、进行分式的乘除运算时,应注意以下几点:

  (1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

  (2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

  (3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

  (4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

  八年级数学下册教案 7

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片。

  学生准备:复习平行四边形性质;学具:课本“探究”内容。

  学法解析

  1、认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容。

  2、知识线索:

  3、学习方式:采用动手操作来发现新的知识,通过交流形成知识体系。

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1、平行四边形定义是什么?如何表示?

  2、平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1、两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2、平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等;从角考虑:对角相等;从对角线考虑:两条对角线互相平分。(借助上图直观理解)

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题。用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索。

  学生活动:分四人小组,拿出准备好的.学具探究。在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形。

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

  八年级数学下册教案 8

  一、教学目标

  1.类比分数的乘除运算探索分式的乘除运算法则。

  2.会进行简单分式的乘除运算。

  3.能解决一些与分式乘除运算有关的简单的实际问题。

  4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。数学生活化,学好数学,为幸福人生奠基。

  二、教材分析

  本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。

  三、学情分析

  八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。采用自主学习与合作学习相结合的学习方式,留给学生足够的`自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想,逐步形成科学的数学价值观。

  四、重点难点

  教学重点:分式的乘除运算法则的理解与运用

  教学难点:分子、分母是多项式的分式的乘除法的运算

  五、教学过程

  (一)、创设情境,引入新课

  活动1:课前三分钟

  学生主持:请同学们根据我的描述猜一个人物?…

  生:鲁班

  学生主持:根据小草的构造鲁班发明了锯子,鲁班运用了什么思想方法?

  生:类比

  这个小故事让我们认识到类比的重要性,前面我们类比分数研究了分式的基本性质。今天,我们就来类比分数的乘除研究5.2分式的乘除法。

  【设计意图】:让学生观察图片,不但可以体会到数学来源于生活,唤起学生对数学的热爱,激发学生学习的兴趣,为类比分数乘除探索分式乘除法则打下基础。

  (二)、合作学习,共探新知

  活动2:预习反馈,探索法则

  问题:口答:

  猜一猜

  师生共同归纳分式的乘除法法则,这里运用了什么数学思想?类比、转化数学思想

  【设计意图】让学生类通过类比→观察猜想→-归纳明晰→-得出结论。通过类比分数的乘除法则总结分式的乘除法法则。

  例题讲解,师生共同完成。

  注意:1.分式乘除法的实质是约分化简。

  2.结果是最简分式或整式。

  单项式 → 约分

  分子、分母 分类

  多项式 → 分解因式,约分

  开心练习:

  学生板演,小组代表在小白板上答题,其余同学在学案上完成。

  【设计意图】:运用“兵教兵”教学方式,让学生通过充分交流,自学已会的学生教还不会的学生教师尽可能少讲,确保学生的学习时间,提高课堂效率。

  活动3:活学活用

  炎热的夏天到了,如果能吃到甘甜的西瓜是多么惬意啊。你会买西瓜吗?让我们跟随咱班的两名同学看看她们是如何买西瓜的?

  播放学生买西瓜视频。

  问题:假如我们把西瓜都看成是球形,半径为R,并把西瓜瓤的密度看成是均匀的,西瓜皮厚都是xcm,,怎样买西瓜合算?

  先猜一猜,再算一算。

  链接几何画板:观察体积比的变化。

  变式:若西瓜的体积不变,是买皮厚的还是皮薄的西瓜?(几何画板演示)

  【设计意图】:将问题生活化,让同学们帮助解决问题,激发学生的求知欲,渗透数感和几何直观,巧妙的利用几何画板将问题动起来,生动直观。变式训练,让学生学会举一反三。

  (三)、跟踪训练,分层达标

  1.利用慧学云交互平台,进行选择题的跟踪训练。

  学生在规定的时间内答题,师现场根据答题结果统计,进行有针对性的讲解。学生充当小老师,教师予以补充。

  2.智力冲浪

  (1)下面的计算对吗?如果不对,应该怎样改正?

  (2)计算

  (4)计算

  【设计意图】:设置梯度训练题,学生砸蛋抢答问题,巩固本节课的知识点,检验学生的掌握程度。

  (四)、归纳小结,形成体系

  我们这节课都学习了哪些知识? 你有哪些收获呀?那我们用到哪些数学思想?由学生归纳本节课的内容,并相互补充。

  【设计意图】:构建知识思维导图,在知识树上进行梳理知识,生动直观。

  类比的学习方法是学习新知识的好方法,让我们细心观察,一起研究有趣的数学吧!

  (六)、布置作业,拓展延伸

  必做题:P116页1题 2题

  思维拓展:

  八年级数学下册教案 9

  【教学目标】

  一、知识目标

  经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

  二、能力目标

  知道分时方程的意义,会解可化为一元一次方程的分式方程。

  三、情感目标

  在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

  【教学重难点】

  将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

  【教学过程】

  一、课前预习与导学

  1、什么叫做分式方程?解分式方程的步骤有哪几步?

  2、判断下面解方程的过程是否正确,若不正确,请加以改正。

  解方程:=3-

  解:两边同乘以(x-1),得

  2=3-x=1,①

  x=3+1-2,②

  所以x=2、③

  (不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3、)

  3、解下列分式方程:(1)=(2)+=2、

  二、新课

  (一)情境创设:

  1、甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

  设甲每天加工服装多少件,可得方程:

  2、一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

  设这个两位数的十位数字是x,可得方程:

  3、某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

  设自行车的速度为xkm/h,可得方程:

  (二)探索活动:

  1、上面所得到的方程有什么共同特点?

  2、这些方程与整式方程有什么区别?

  结论:分母中含有未知数的方程叫做分式方程。

  3、如何解分式方程=?

  解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

  可以得到一元一次方程:20(x+1)=24x

  解这个方程,得

  x=5

  为了判断x=5是否是原方程的解,我们把x=5代入原方程:

  左边==4,右边==4,左边=右边。

  x=5是原方程的解。

  说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的`最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

  三、例题教学:

  例1、解方程:-=0

  板书出解分式方程的一般过程及完整的书写格式。

  解:方程两边同乘x(x-2),得

  3(x-2)-2x=0

  解这个方程,得

  x=6

  把x=6代入原方程:左边=右边=0,左边=右边。

  x=6是原方程的解。

  四、课堂练习:

  1、下列各式中,分式方程是()

  A.B.C.D.

  2、分式方程解的情况是()

  A.有解,B.有解C.有解,D.无解

  3、解下列方程:

  4、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

  八年级数学下册教案 10

  教学目标

  (一)知识与技能目标

  使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.

  (二)过程与方法目标

  通过分式的化简提高学生的运算能力.

  (三)情感与价值目标.

  渗透类比转化的数学思想方法.

  教学重点和难点

  1、重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.

  2、难点:灵活运用分式的基本性质进行分式化简.

  教学方法:分组讨论.

  教学过程

  (一)情境引入

  1、数学小笑话:

  从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

  2、问:这个富家子弟为什么会犯这样的错误?

  3、分数约分的方法及依据是什么?

  (1)的依据是什么?呢?

  (2)你认为分式与相等吗?与呢?

  (二)新课

  1、类比分数的基本性质,由学生小结出分式的基本性质:

  分式的.分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:

  =,=(其中M是不等于零的整式)

  2、加深对分式基本性质的理解:

  例1下列等式的右边是怎样从左边得到的?

  由学生口述分析,并反问:为什么c≠0?

  解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)

  八年级数学下册教案 11

  教学目标:

  1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

  2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

  教学重点:

  去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

  教学难点:

  验根的方法。分式方程增根产生的原因。

  教学准备:

  小黑板。

  教学过程:

  复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

  (1);(2);(3);(4);

  (5);(6);(7);(8)。

  讲授新课:

  1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

  2.讨论分式方程的'解法:

  (1)复习解方程时,怎样去分母?

  (2)讲解例1:解方程(按课文讲解)

  归纳:解分式方程的基本思想:

  分式方程整式方程

  (3)讲解例2:解方程(按课文讲解)

  归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

  想一想:产生增根的原因是什么?

  巩固练习:P1451t,2t。

  课堂小结:什么叫做分式方程?

  解分式方程时,为什么要检验?怎样检验?

  布置作业:见作业本。

  八年级数学下册教案 12

  教学目标:

  1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

  2、能利用它们的性质和判定进行推理和计算。

  3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

  教学重点、难点:

  重点:掌握特殊平行四边形性质与判定。

  难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

  教学过程:

  一、梳理知识:

  1.特殊平行四边形的性质.

  1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

  则BC=_____cm,△BOC的周长=_____cm

  2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

  则你能求出哪些线段的长度?

  3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

  则AB=_____cm,△BOC的周长=_______cm.

  小结:特殊平行四边形的性质(PPT呈现)

  2.特殊平行四边形的判定.

  要使平行四边形ABCD成为矩形,需要增加的条件________.

  要使平行四边形ABCD成为菱形,需要增加的条件________.

  要使矩形ABCD成为正方形,需要增加的条件________.

  要使菱形ABCD成为正方形,需要增加的条件________.

  小结:特殊平行四边形的判定(PPT呈现)

  二、深化提高:

  1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

  (1)求证:四边形ADCE为矩形;

  (2)当△ABC满足什么条件时,

  四边形ADCE是一个正方形?并给出证明.

  2.如图,矩形ABCD的对角线AC、BD交于点O,

  过点D作DP∥OC,过C点作CP∥DO,交DP于点P,

  试判断四边形CODP的形状.

  变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

  变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

  3.如图,在中,是边的中点,分别是及其延长线上的点,.

  (1)求证:.

  (2)请连结,试判断四边形的形状,并说明理由.

  (3)若四边形是菱形,判断的`形状。

  三、拓展提高

  1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、

  △BCE、△ACF,

  (1)四边形ADEF是什么四边形?并说明理由

  (2)当△ABC满足什么条件时,四边形ADEF是菱形?

  (3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.

  2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

  (1)求证:BE=CD;

  (2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,

  四、课堂小结

  五、作业

  1.如图,在正方形ABCD中,P为对角线BD上一点,

  PE⊥BC,垂足为E,PF⊥CD,垂足为F。

  求证:EF=AP

  2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,

  EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。

  3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的长。

  八年级数学下册教案 13

  一、教学目标

  1、使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

  2、使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

  3、使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

  4、引导学生不断小结运算方法和技巧,提高运算能力。

  二、教学重点和难点

  1、重点:分式的加减运算。

  2、难点:异分母的分式加减法运算。

  三、教学方法

  启发式、分组讨论。

  四、教学手段

  幻灯片。

  五、教学过程

  (一)引入

  1、如何计算:

  2、如何计算:

  3、若分母不同如何计算?如:

  (二)新课

  1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2、通分的依据:分式的基本性质。

  3、通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的'公分母叫做最简公分母。

  例1通分:

  (1)解:∵最简公分母是,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  (2)解:

  例2通分:

  (1)解:∵最简公分母的是2x(x+1)(x—1),

  小结:当分母是多项式时,应先分解因式。

  (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

  练习:教材P,79中1、2、3。

  (三)课堂小结

  1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  八年级数学下册教案 14

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的'独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

  八年级数学下册教案 15

  一、学习目标:

  让学生了解多项式公因式的意义,初步会用提公因式法分解因式

  二、重点难点

  重点:能观察出多项式的公因式,并根据分配律把公因式提出来

  难点:让学生识别多项式的公因式.

  三、合作学习:

  公因式与提公因式法分解因式的概念.

  三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

  四、精讲精练

  例1、将下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

  首先找各项系数的____________________,如8和12的`公约数是4.

  其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的

  课堂练习

  1.写出下列多项式各项的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小结:

  总结出找公因式的一般步骤.:

  首先找各项系数的大公约数,

  其次找各项中含有的相同的字母,相同字母的指数取次数最小的

  注意:(a-b)2=(b-a)2

  六、作业

  1、教科书习题

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

【八年级数学下册教案】相关文章:

小学人教版数学下册教案11-25

优秀华师大版八年级数学下册教案全集04-23

八年级英语下册教案02-16

高一数学下册教案最新02-02

八年级数学下册教学反思04-18

八年级数学下册的教学反思05-28

人教版八年级下册教案推荐11-24

八年级下册语文教案02-27

数学五年级下册教案02-27